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Introduction

m Nucleons in neutron star core likely to be superfluids —
protons and neutrons can move “independently”

m Different mode spectrum, twice as many modes (Lindblom
and Mendell 1994, Lee 1995)

m Goal: calculate g—modes and p—modes in spherical,
nonrotating, two—superfluid stars, account for electrons and
muons. Later add rotation, hyperons, quark matter cores, etc.
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Why?

m Low-frequency modes coupling to tides during NS-NS or
NS-BH inspiral (Bildsten and Cutler 1992, Lai 1994, etc.)
have implications for gravitational wave observations due to
GW phase shift- though unlikely for current-generation
detectors

m Nonlinear, multi-mode instabilities, if they occur, could have a
greater effect on GW phase shift (Essick, Vitale and Weinberg
2016)

m Future: effect of superfluidity, multiple leptonic species on the
r—mode instability, which sets upper limit on NS rotation rate.
Observed maximum rotation rate (~ 700 Hz) twice the
currently-explained theoretical value.
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What's different?

m Many calculations of compressional modes in superfluid stars
have been performed, some including leptonic buoyancy
g-modes (Yu and Weinberg 2017)

m We use a relatively flexible parameterized EQOS, allowing us to
see how g-mode frequencies vary as functions of mass, nuclear
compressibility K and neutron—proton entrainment

m We use a more realistic, two-fluid model of the crust
accounting for superfluid neutrons

m We find previously undiscovered nearly-resonant pairs of
p-modes
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Stellar model and equation of state

m EOS must allow M > 2M,

m Must also include explicit dependence on densities of
individual fluid constituents (n, p, e, w in core, nuclei and
dripped neutrons in inner crust)

m Background star calculated using TOV equation

m T = 0, no magnetic field, no dissipation, Cowling
approximation
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Crust

m Use BPS EOS for outer crust, BBP EOS for inner crust

m Ignore outer crust for the purpose of calculating normal
modes— set the outer boundary condition (AP = 0) at
neutron drip

m Inner crust of neutron—rich nuclei surrounded by electron gas
and dripped neutron (super)fluid. Neutron drip begins at
pm ~ 3 x 10" g/cm?3, nuclei fully dissolve at p,, ~ 1 x 10
g/cm3

m At densities just above neutron drip but within inner crust,
neutron pairing gap goes to 0 even at 7' = 0 (Gezerlis, Pethick
and Schwenk 2014) — small (~ 10 m) layer of single fluid in
inner crust where normal fluid nuclei are comoving with nuclei
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(Outer) Core Equation of state

m p=p(n,Y =ny/np, f =ne/ny), beta equilibrium gives
f = f(np,Y). Muons present for ny > 0.87nnyc.

m npey gas kinetic energy plus simple nuclear interaction based
on Hebeler+ 2013

n? 4 fonrstl
1+ fs

+ nnucEAﬁ2 ( —

pint(nba Y) = nnucES

m Modified to give energy per baryon o ny at low densities, since
used same interaction term for nuclear energy in BBP EOS
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m Parameters chosen to allow 2M, neutron star, satisfy nuclear
physics constraints: Eyinding = —16 MeV, zero pressure,
reasonable S, and L for symmetric nuclear matter at
saturation density

m Fg=-378 MeV, E4 =19.9 MeV, v4 = 0.61, ng = 0.05
fixed— these had only a small effect on the maximum mass

m S, =31.7 MeV, L =60.3 MeV

m —0.667 < fg < —0.530, 1.31 < yg < 1.547 to vary nuclear
compressibility 230 < K < 280 MeV; label parameterizations
by value of K
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Two—superfluid formalism

m Since Wpjasma > wp ¢, leptons co-move with the protons

m Describe perturbations with two displacement fields: In the
core, &, (neutrons) and &, (“charged”, protons plus leptons)

m In the inner crust, two fluids are &, (nuclei) and & (dripped
neutron superfluid). Use single displacement field for small
single-fluid region above neutron drip

m For non-rotating, spherically-symmetric stars, can take as
local displacement field

€0 = " €L Yime, + &5 ()P VY
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m Perturbing the Euler equations gives relations between displace-
ment fields and chemical potential perturbations. In the core

_ _ o d [op
Y(1—ep 2 o1 Yen 2 ¢r A/2 n
0=e"(1—-en)0;§, +e a0, +e ar \ o

0=e"(1—e)07& +e Vendily + 1 <5“">
T\ Mo

0= (1 — )0 + e Ve 00¢r + e V2 L <5“q> 4 Ot = Opte dfo

dr \ o po  dr
1/6
0=re"(1— )0l +e Vep0i& + - (“ q)
™\ HO

dfo/dr = lepton composition gradient, e(") = —g;;,
A = Grr
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m Two fluids are coupled thermodynamically through éu.,, and
dpig, in addition to coupling via entrainment

m Entrainment in core based on Prix and Rieutord 2002 model:

m Varied ¢, between 0 and 0.5
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Leptonic Brunt-Vaisala frequency

m Obtain buoyancy due to dfy/dr- perturbed fluid no longer in
beta equilibrium

N2(r) = —ev A2 (ufduo> ( Hnn = fing > dfo
K (1 —€p — en) po dr Nq (Mnn,u'qq - :u%q) dr

Ope
Ony

where fiz, =

m NZ =0 below muon threshold density
m First found by Gusakov and Kantor 2014
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Brunt-Viiséla frequency (K = 230 MeV, ¢, = 0)

Nq » 1AM lepton composition gradient-
5L Nq, 2.0My — derived in two superfluid star
N, £ 1.4Mg ---- } combined proton fraction and

1 lepton composition gradient-

4L an’ 2'0‘]\4@ o derived in normal fluid star

Ree, 2.0Mp,
Ree, LAM,
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Calculating the modes

m Defining 11, = 5““ and using the perturbed continuity
equation, we obtam a system of four coupled first—order ODEs

der 2 dl k2 d
ﬁ+[,+ 2”"]§£+ [,%EVJFM] N2, = B0 a2 Enakef 4o o
T T w

dr np D np D 1 np,D dr

dgy 2 dinn d, k3
q [ 4 | Hnnbaf ﬁ] ¢ |: Lv . Hoknn A2, = Hokng x/2p

dr r dr ngD dr ngD ng

f;wz = cvik/2 Lnn
dr
r, 2 2y _ v—x/2 dnq FON(?EA/z(P'nan - ;U'nqnn)
€ w? = N2) = v /28

dr (dpo/dr)(Hnn — an)

1(1+1)
r2

where pgf = %—*;f, D = pinnprgq — u%q, ki = (No entrainment shown

here)
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B g = g"TZ = ign responsible for thermodynamic coupling of
fluids

m Similar set of equations for two-fluid crust, but n — f, ¢ — ¢,
Ny=0

® i,y for crust complicated: No beta equilibrium in perturbed
fluid elements, but impose chemical, mechanical equilibrium
and the “nuclear virial theorem”

m Perturb p, conditions for mechanical, chemical equilibrium —
obtain pe(ne,ng), pf(ne, ny)
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—
Boundary/Interface conditions

m Regularity at r = 0, AP = 0 at surface
m Crust—Core interface:

Egl+ = &0~ (interface moves with charged fluid)
(nn&y, — nnéy)+ = (ny€y —nyg&r)—  (baryon conservation)
A P|y = A.P|- (continuity of traction)
Opin|+ = Spyg|— (“chemical gauge” independence)

m Two-fluid—single fluid interface:

(n&s +nele)+ = (méy)—  (baryon conservation)
(ngdpy + nedpe)+ = (npdpy)—  (continuity of traction)
Afnglr—per =0 (Phase transition moves with SF neutrons)
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g—modes

m Low—frequency buoyancy modes arising from composition or
temperature gradients

m Approximate dispersion relation

2 A
W2 = N2 kie
g k2 + k% et

m Allowed frequencies are roughly set by (WKB approximation)

Tout 1
NemT = / krdr — wy o< n,.
T

in
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I = 2 g-modes for varying mass and entrainment strength
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I =2 g-mode displacement fields (K = 230 MeV, 1.4Mg, €, = 0)
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m WKB approximation is accurate to within < 2 % for n,, > 2

m Approximate g-mode dispersion as function of mass, nuclear
compressibility, entrainment (< 5 % deviation for n, 4 > 2):

wy 608 — 0.83(K — 240 MeV) — 004L + 207¢,

Hz,
2m Ny g
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p—modes

m High—frequency acoustic modes w,, o n,

m Naive approximate dispersion relation in core: w2 = c2, k>

P
where
Mg | (Hag B fag  Han\© | A3
cgi:ey_)\ nltq (qq+ nn)i (qq_ nn) + nq
2u0 Ny, Ng N, ng NpNg
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I =2 f & p-mode displacement fields (K = 230 MeV, 1.4Mg, €, = 0)
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m Two sets of p—modes corresponding to two superfluids

m n, ¢ fluid contributions to each p—-mode do not have same
radial node number, are nearly uncoupled (Kantor and
Gusakov 2011, Gualtieri+ 2014)

m Pairing between uncoupled n, ¢ modes with similar frequency
occurs, which shifts the combined mode frequency away from
the uncoupled mode frequencies and can result in creation of
nearly-resonant p-mode pairs with Aw;, ~ wy- could be a
source of nonlinear three-mode instabilities (Weinberg, Arras
and Burkart 2013, Weinberg 2016)

m Strong entrainment forces both fluids to move together with
“neutron-dominated” dispersion



Normal modes of two—superfluid neutron stars with leptonic buoyancy

I =2 p-modes (K = 230 MeV, 1.4Mg)
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Conclusion

m Reproduced previous calculations of g- and p-modes in
two-fluid neutron stars with leptonic buoyancy, but included
more realistic two-fluid crust

m Two-fluid crust boundary conditions remove radial nodes from
n fluid g-mode displacement fields

m Approximate expression for g-mode frequencies as function of
M, K and entrainment- should check for different equations
of state

m Find closely—spaced p—mode frequencies — potential for large
nonlinear couplings between tide and two p—modes, though
exact details of this in two—fluid case aren't known



