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D E T E C T I O N  A N D  M E A S U R E M E N T

• detection and characterization uses matched filtering 

• rapid analysis algorithms that can issue alerts with ~ minute 
latency 

• working on issuing alerts even before merger 

• requires very accurate waveforms 

• >3 decades of effort on analytical and numerical modeling of 
waveform, and still ongoing  

• Bayesian methods for parameter estimation and model inference
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signal make a negligible contribution to our inference for
GW170817 [51, 52].

In [5], we presented the first measurements of the prop-
erties of GW170817, including a first set of constraints on
the tidal deformabilities of the two compact objects, from
which inferences about the EOS can be made. An indepen-
dent analysis further exploring how well the gravitational-
wave data can be used to constrain the tidal deformabilites,
and, from that, the NS radii, has also been performed re-
cently [53]. Our initial bounds have facilitated a large
number of studies, e.g. [54–64], aiming to translate the
measurements of masses and tidal deformabilities into con-
straints on the EOS of NS matter. In a companion pa-
per [52], we perform a more detailed analysis focusing on
the source properties, improving upon the original analysis
of [5] by using Virgo data with reduced calibration uncer-
tainty, extending the analysis to lower frequencies, employ-
ing more accurate waveform models, and fixing the loca-
tion of the source in the sky to the one identified by the
electromagnetic observations.

Here we complement the analysis of [52], and work un-
der the hypothesis that GW170817 was the result of a coa-
lescence of two NSs whose masses and spins are consistent
with astrophysical observations and expectations. More-
over since NSs represent equilibrium ground-state con-
figurations, we assume that their properties are described
by the same EOS. By making these additional assump-
tions, we are able to further improve our measurements
of the tidal deformabilities of GW170817, and constrain
the radii of the two NSs. Moreover, we use an efficient
parametrization of the EOS to place constraints on the pres-
sure of cold matter at supranuclear densities using GW ob-
servations. This direct measurement of the pressure takes
into account physical and observational constraints on the
NS EOS, namely causality, thermodynamic stability, and
a lower limit on the maximum NS mass supported by the
EOS to be Mmax > 1.97M�. The latter is chosen as a 1-
� conservative estimate, based on the observation of PSR
J0348+0432 with M = 2.01 ± 0.04M�[65], the heaviest
NS known to date.

The radii measurements presented here improve upon
existing results (e.g. [53, 58, 62]) which had used the ini-
tial tidal measurements reported in [5]. We also verify that
our radii measurements are consistent with the result of the
methodologies presented in these studies when applied to
our improved tidal measurements. Moreover, we obtain a
more precise estimate of the NS radius than [53] by almost
a factor of 2.

METHODS

In this section we describe the details of the analy-
sis. We use the same LIGO and Virgo data and calibra-
tion model analyzed in [52]. The data can be dowloaded
from the LIGO Open Science Center (LOSC) [66]. The

data include the subtraction of an instrumental artifact oc-
curring at LIGO-Livingston within 2 s of the GW170817
merger [5, 67], as well as the subtraction of independently
measurable noise sources [68–71].

Bayesian methods

We employ a coherent Bayesian analysis to estimate
the source parameters ~# as described in [72, 73]. The
goal is to determine the posterior probability density func-
tion (PDF), p(~#|d), given the LIGO and Virgo data d.
Given a prior PDF p(~#) on the parameter space (quan-
tifying our prior belief in observing a source with prop-
erties ~#), the posterior PDF is given by Bayes’ Theorem
p(~#|d) / p(~#)p(d|~#), where p(d|~#) is the likelihood of
obtaining the data d given that a signal with parameters ~#
is present in the data. Evaluating the multi-dimensional
p(~#|d) analytically is computationally prohibitive so we
resort to sampling techniques to efficiently draw samples
from the underlying distribution. We make use of the
Markov-chain Monte Carlo algorithm as implemented in
the LALInference package [72], which is part of the
publicly available LSC Algorithm Library (LAL) [74]. For
the likelihood calculation, we use 128 s of data around
GW170817 and consider a frequency range of 23–2048 Hz
covering both the time and frequency ranges where there
was appreciable signal above the detector noise. The
power spectral density (PSD) of the noise is computed on-
source [52, 75, 76], and we marginalize over the detectors’
calibration uncertainties as described in [52, 73, 77].

In the analysis of a GW signal from a binary NS coales-
cence, the source parameters ~# on which the signal depends
can be decomposed as ~# = (~#PM, ~#EOS), into parameters
that would be present if the two bodies behaved like point-
masses ~#PM, and EOS-sensitive parameters ~#EOS that arise
due to matter effects of the two finite-sized bodies (e.g.
tidal deformabilities). The priors on the point-mass param-
eters that we use are described in [52], and we do not repeat
them here. We only consider the “low-spin” prior of [52]
where the dimensionless NS spin parameter is restricted to
�  0.05, in agreement with expectations from Galactic
binary NS spin measurements [78], and we fix the location
of the source in the sky to the one given by EM obser-
vations. Regarding the EOS-related part of the parameter
space and the corresponding priors, we consider two physi-
cally motivated parameterizations of different dimensional-
ities, which we describe in detail in the following sections.
The first method requires the sampling of tidal deformabil-
ity parameters, whereas the second method directly sam-
ples the EOS function p(⇢) from a 4-dimensional family
of functions. In both cases, the assumption that the binary
consists of two NSs that are described by the same EOS is
implicit in the parametrization of matter effects (in contrast
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∼100 s (calculated starting from 24 Hz) in the detectors’
sensitive band, the inspiral signal ended at 12∶41:04.4 UTC.
In addition, a γ-ray burst was observed 1.7 s after the
coalescence time [39–45]. The combination of data from
the LIGO and Virgo detectors allowed a precise sky
position localization to an area of 28 deg2. This measure-
ment enabled an electromagnetic follow-up campaign that
identified a counterpart near the galaxy NGC 4993, con-
sistent with the localization and distance inferred from
gravitational-wave data [46–50].
From the gravitational-wave signal, the best measured

combination of the masses is the chirp mass [51]
M ¼ 1.188þ0.004

−0.002M⊙. From the union of 90% credible
intervals obtained using different waveform models (see
Sec. IV for details), the total mass of the system is between
2.73 and 3.29 M⊙. The individual masses are in the broad
range of 0.86 to 2.26 M⊙, due to correlations between their
uncertainties. This suggests a BNS as the source of the
gravitational-wave signal, as the total masses of known
BNS systems are between 2.57 and 2.88 M⊙ with compo-
nents between 1.17 and ∼1.6 M⊙ [52]. Neutron stars in
general have precisely measured masses as large as 2.01#
0.04 M⊙ [53], whereas stellar-mass black holes found in
binaries in our galaxy have masses substantially greater
than the components of GW170817 [54–56].
Gravitational-wave observations alone are able to mea-

sure the masses of the two objects and set a lower limit on
their compactness, but the results presented here do not
exclude objects more compact than neutron stars such as
quark stars, black holes, or more exotic objects [57–61].
The detection of GRB 170817A and subsequent electro-
magnetic emission demonstrates the presence of matter.
Moreover, although a neutron star–black hole system is not
ruled out, the consistency of the mass estimates with the
dynamically measured masses of known neutron stars in
binaries, and their inconsistency with the masses of known
black holes in galactic binary systems, suggests the source
was composed of two neutron stars.

II. DATA

At the time of GW170817, the Advanced LIGO detec-
tors and the Advanced Virgo detector were in observing
mode. The maximum distances at which the LIGO-
Livingston and LIGO-Hanford detectors could detect a
BNS system (SNR ¼ 8), known as the detector horizon
[32,62,63], were 218 Mpc and 107 Mpc, while for Virgo
the horizon was 58 Mpc. The GEO600 detector [64] was
also operating at the time, but its sensitivity was insufficient
to contribute to the analysis of the inspiral. The configu-
ration of the detectors at the time of GW170817 is
summarized in [29].
A time-frequency representation [65] of the data from

all three detectors around the time of the signal is shown in
Fig 1. The signal is clearly visible in the LIGO-Hanford
and LIGO-Livingston data. The signal is not visible

in the Virgo data due to the lower BNS horizon and the
direction of the source with respect to the detector’s antenna
pattern.
Figure 1 illustrates the data as they were analyzed to

determine astrophysical source properties. After data col-
lection, several independently measured terrestrial contribu-
tions to the detector noise were subtracted from the LIGO
data usingWiener filtering [66], as described in [67–70]. This
subtraction removed calibration lines and 60 Hz ac power
mains harmonics from both LIGO data streams. The sensi-
tivity of the LIGO-Hanford detector was particularly
improved by the subtraction of laser pointing noise; several
broad peaks in the 150–800 Hz region were effectively
removed, increasing the BNS horizon of that detector
by 26%.

FIG. 1. Time-frequency representations [65] of data containing
the gravitational-wave event GW170817, observed by the LIGO-
Hanford (top), LIGO-Livingston (middle), and Virgo (bottom)
detectors. Times are shown relative to August 17, 2017 12∶41:04
UTC. The amplitude scale in each detector is normalized to that
detector’s noise amplitude spectral density. In the LIGO data,
independently observable noise sources and a glitch that occurred
in the LIGO-Livingston detector have been subtracted, as
described in the text. This noise mitigation is the same as that
used for the results presented in Sec. IV.
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Abstract

On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo
detectors, and the gamma-ray burst (GRB) GRB170817A was observed independently by the Fermi Gamma-ray
Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics
Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB170817A and
GW170817 occurring by chance is 5.0 10 8´ - . We therefore confirm binary neutron star mergers as a progenitor of
short GRBs. The association of GW170817 and GRB170817A provides new insight into fundamental physics and
the origin of short GRBs. We use the observed time delay of 1.74 0.05 s+ o( ) between GRB170817A and
GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between

3 10 15- ´ - and 7 10 16+ ´ - times the speed of light, (ii) place new bounds on the violation of Lorentz invariance,
(iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and
electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region
emitting the gamma-rays. GRB170817A is the closest short GRB with a known distance, but is between 2 and 6
orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors,
and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances.
Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo
detectors of 0.1–1.4 per year during the 2018–2019 observing run and 0.3–1.7 per year at design sensitivity.

Key words: binaries: close – gamma-ray burst: general – gravitational waves

1. Introduction and Background

GW170817 and GRB170817A mark the discovery of a
binary neutron star (BNS) merger detected both as a gravitational
wave (GW; LIGO Scientific Collaboration & Virgo Collabora-
tion 2017a) and a short-duration gamma-ray burst (SGRB;
Goldstein et al. 2017; Savchenko et al. 2017b). Detecting GW
radiation from the coalescence of BNS and neutron star (NS)–
black hole (BH) binary systems has been a major goal (Abbott
et al. 2017a) of the LIGO (Aasi et al. 2015) and Virgo (Acernese
et al. 2015) experiments. This was at least partly motivated by
their promise of being the most likely sources of simultaneously
detectable GW and electromagnetic (EM) radiation from the
same source. This is important as joint detections enable a wealth
of science unavailable from either messenger alone(Abbott et al.
2017f). BNS mergers are predicted to yield signatures across the
EM spectrum(Metzger & Berger 2012; Piran et al. 2013),
including SGRBs (Blinnikov et al. 1984; Paczynski 1986; Eichler
et al. 1989; Paczynski 1991; Narayan et al. 1992), which produce
prompt emission in gamma-rays and longer-lived afterglows.

A major astrophysical implication of a joint detection of an
SGRB and of GWs from a BNS merger is the confirmation that
these binaries are indeed the progenitors of at least some SGRBs.
GRBs are classified as short or long depending on the duration of
their prompt gamma-ray emission. This cut is based on spectral
differences in gamma-rays and the bimodality of the observed

distribution of these durations (Dezalay et al. 1992; Kouveliotou
et al. 1993). This empirical division was accompanied by
hypotheses that the two classes have different progenitors. Long
GRBs have been firmly connected to the collapse of massive stars
through the detection of associated Type Ibc core-collapse
supernovae (see Galama et al. 1998, as well as Hjorth & Bloom
2012 and references therein). Prior to the results reported here,
support for the connection between SGRBs and mergers of BNSs
(or NS–BH binaries) came only from indirect observational
evidence(Nakar 2007; Berger et al. 2013; Tanvir et al. 2013;
Berger 2014), population synthesis studies (Bloom et al. 1999;
Fryer et al. 1999; Belczynski et al. 2006), and numerical
simulations (e.g., Aloy et al. 2005; Rezzolla et al. 2011; Kiuchi
et al. 2015; Baiotti & Rezzolla 2017; Kawamura et al. 2016; Ruiz
et al. 2016). The unambiguous joint detection of GW and EM
radiation from the same event confirms that BNS mergers are
progenitors of (at least some) SGRBs.
In Section 2 we describe the independent observations of

GW170817 by the LIGO–Virgo and of GRB170817A by the
Fermi Gamma-ray Burst Monitor (GBM) and by the SPectro-
meter on board INTEGRAL Anti-Coincidence Shield (SPI-
ACS). In Section 3 we establish the firm association between
GW170817 and GRB170817A. In Section 4 we explore the
constraints on fundamental physics that can be obtained from
the time separation between the GW and EM signals. In
Section 5 we explore the implications of the joint detection of
GW170817 and GRB170817A on the SGRB engine and the
NS equation of state (EOS). In Section 6 we explore the
implications of the comparative dimness of GRB170817A
relative to the known SGRB population and revise the
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LIGO-Livingston, and Virgo data respectively, making it
the loudest gravitational-wave signal so far detected. Two
matched-filter binary-coalescence searches targeting
sources with total mass between 2 and 500 M⊙ in the
detector frame were used to estimate the significance of this
event [9,12,30,32,73,81–83,86,87,91–97]. The searches
analyzed 5.9 days of LIGO data between August 13,
2017 02∶00 UTC and August 21, 2017 01∶05 UTC.
Events are assigned a detection-statistic value that ranks
their probability of being a gravitational-wave signal. Each
search uses a different method to compute this statistic and
measure the search background—the rate at which detector
noise produces events with a detection-statistic value equal
to or higher than the candidate event.
GW170817 was identified as the most significant event

in the 5.9 days of data, with an estimated false alarm rate of
one in 1.1 × 106 years with one search [81,83], and a
consistent bound of less than one in 8.0 × 104 years for the
other [73,86,87]. The second most significant signal in this
analysis of 5.9 days of data is GW170814, which has a
combined SNR of 18.3 [29]. Virgo data were not used in
these significance estimates, but were used in the sky
localization of the source and inference of the source
properties.

IV. SOURCE PROPERTIES

General relativity makes detailed predictions for the
inspiral and coalescence of two compact objects, which

may be neutron stars or black holes. At early times, for low
orbital and gravitational-wave frequencies, the chirplike
time evolution of the frequency is determined primarily by
a specific combination of the component masses m1 and
m2, the chirp mass M ¼ ðm1m2Þ3=5ðm1 þm2Þ−1=5. As the
orbit shrinks and the gravitational-wave frequency grows
rapidly, the gravitational-wave phase is increasingly influ-
enced by relativistic effects related to the mass ratio
q ¼ m2=m1, where m1 ≥ m2, as well as spin-orbit and
spin-spin couplings [98].
The details of the objects’ internal structure become

important as the orbital separation approaches the size of
the bodies. For neutron stars, the tidal field of the
companion induces a mass-quadrupole moment [99,100]
and accelerates the coalescence [101]. The ratio of the
induced quadrupole moment to the external tidal field is
proportional to the tidal deformability (or polarizability)
Λ ¼ ð2=3Þk2½ðc2=GÞðR=mÞ&5, where k2 is the second Love
number and R is the stellar radius. Both R and k2 are fixed
for a given stellar massm by the equation of state (EOS) for
neutron-star matter, with k2 ≃ 0.05–0.15 for realistic neu-
tron stars [102–104]. Black holes are expected to have
k2 ¼ 0 [99,105–109], so this effect would be absent.
As the gravitational-wave frequency increases, tidal

effects in binary neutron stars increasingly affect the phase
and become significant above fGW ≃ 600 Hz, so they are
potentially observable [103,110–116]. Tidal deformabil-
ities correlate with masses and spins, and our measurements
are sensitive to the accuracy with which we describe
the point-mass, spin, and tidal dynamics [113,117–119].
The point-mass dynamics has been calculated within the
post-Newtonian framework [34,36,37], effective-one-body
formalism [10,120–125], and with a phenomenological
approach [126–131]. Results presented here are obtained
using a frequency domain post-Newtonian waveform
model [30] that includes dynamical effects from tidal
interactions [132], point-mass spin-spin interactions
[34,37,133,134], and couplings between the orbital angular
momentum and the orbit-aligned dimensionless spin com-
ponents of the stars χz [92].
The properties of gravitational-wave sources are inferred

by matching the data with predicted waveforms. We
perform a Bayesian analysis in the frequency range
30–2048 Hz that includes the effects of the 1σ calibration
uncertainties on the received signal [135,136] (< 7% in
amplitude and 3° in phase for the LIGO detectors [137] and
10% and 10° for Virgo at the time of the event). Unless
otherwise specified, bounds on the properties of
GW170817 presented in the text and in Table I are 90%
posterior probability intervals that enclose systematic
differences from currently available waveform models.
To ensure that the applied glitch mitigation procedure

previously discussed in Sec. II (see Fig. 2) did not bias the
estimated parameters, we added simulated signals with
known parameters to data that contained glitches analogous
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FIG. 3. Sky location reconstructed for GW170817 by a rapid
localization algorithm from a Hanford-Livingston (190 deg2,
light blue contours) and Hanford-Livingston-Virgo (31 deg2,
dark blue contours) analysis. A higher latency Hanford-Living-
ston-Virgo analysis improved the localization (28 deg2, green
contours). In the top-right inset panel, the reticle marks the
position of the apparent host galaxy NGC 4993. The bottom-right
panel shows the a posteriori luminosity distance distribution
from the three gravitational-wave localization analyses. The
distance of NGC 4993, assuming the redshift from the NASA/
IPAC Extragalactic Database [89] and standard cosmological
parameters [90], is shown with a vertical line.
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FIG. 8. Snapshots of the rest-mass density on the (x, y) plane for the binary ALF2-q10-M1325. From left to right, the panels refer to
five characteristic times: the initial time, the time of the merger, the time right after the merger (i.e., at t = 1.0ms), when the ` = m = 2
deformation in the HMNS starts to develop (i.e., at t = 3.0ms), and a later time (i.e., at t = 10.0ms). Note that only in the last panel is the
bar-deformed HMNS well defined and quasistationary.

on the (x, y) plane at five characteristic times: the initial time,
the time of the merger, the time right after the merger (i.e., at
t = 1.0ms), when the stellar core stops oscillating and an
` = m = 2 deformation in the HMNS starts to develop (i.e., at
t = 3.0ms), and then when the bar-deformed HMNS (cf., re-
gion in white) is well defined and with a quasistationary core
(i.e., at t = 10.0ms).

Following this phenomenology, it is possible to build a me-
chanical toy model, whose mathematical details are presented
in Appendix A, in which the object produced right after the
stellar contact is composed of an axisymmetric disk rotating
rapidly at a given angular frequency, say ⌦(t), to which two
spheres are connected (e.g., via a shaft) but are also free to
oscillate via a spring that connects them (see Fig. 17 in Ap-
pendix A). In such a system, the two spheres will either ap-
proach each other, decreasing the moment of inertia of the
system, or move away from each other, increasing the moment
of inertia. Because the total angular momentum is essentially
conserved, the system’s angular frequency will vary between
a minimum value ⌦1 (corresponding to the time when the two
spheres are at the largest separation) and a maximum value
⌦3 (corresponding to the time when the two spheres are at the
smallest separation). The values of ⌦1 and ⌦3 depend nonlin-
early on the properties of the system (i.e., the mass and radius
of the disk, and the mass of the spheres) but are such that
⌦2 = 1

2 (⌦1 + ⌦3), just as f2 ⇡ 1
2 (f1 + f3) in the PSDs we

have computed. Stated differently, the mechanical toy model
considered here will rotate with an angular frequency that is a
function of time and bounded by ⌦1 and ⌦3. Because the time
spent at a given frequency is ⌧⌦ ⌘ ⌦/(d⌦/dt), more time is
obviously spent at the frequencies ⌦(t) = ⌦1 and ⌦(t) = ⌦3,
where d⌦/dt ' 0. As a result, more power is expected to ap-
pear in the GW signal at these frequencies, hence producing
a low-frequency peak around ⌦1 and a high-frequency peak
around ⌦3. If dissipative processes are present, e.g., if the
spring is not ideal and the oscillations are damped, then the
angular frequency will tend secularly to ⌦2, i.e., ⌦(t) = ⌦2

for t ! 1 (cf., Fig. 18 below). As a result, most of the power
in the PSD will appear around ⌦2, with two main sidebands
at ⌦1 and ⌦3. Conversely, if dissipative processes are not
present, then the GW signal will have contributions at fre-
quencies ⌦2 and at its overtones ⌦

n

' (n/2)⌦2, such that

⌦2 ' 1
2 (⌦1 + ⌦3). (Note that in the presence of dissipative

processes a ' sign is needed in the estimate of ⌦2 because
the asymptotic frequency is only approximately the average
of ⌦1 and ⌦3; this is shown in the middle panel of Fig. 18
and reflects the fact that the system is not perfectly balanced.)
Overall, and as we will discuss in more detail in Appendix A,
this toy model can therefore account for both the presence of
the main peak f2 and for the two equally distant sidebands at
f1 and f3.

There is a simple way of testing whether these modes are
coming just from the immediate post-merger phase or are pro-
duced on longer time scales in terms of nonlinear couplings.
This is shown in Fig. 9, which reports again the PSDs for
the five EOSs and for a representative value of the mass,
i.e., M̄ = 1.30M�. Thin solid lines of different colors show
the same PSDs as in Fig. 7, with the two vertical dashed
lines marking the positions of the peak frequencies f1 and f2.
Shown instead with thick solid lines of the same colors are
the PSDs when the waveforms are restricted to the interval
t 2 [609, 5000]M� ⇡ [3.00, 24.63]ms, that is, when the first
3ms after the merger are cut from the time series. Remark-
ably, in this case the f1 and f3 peaks essentially disappear,
while the f2 peaks remain very strong and without consider-
able changes in frequency apart for the very soft EOSs. We
find this result a convincing validation of the correctness of
the toy model and a strong evidence that most of the power in
the f1 and f3 peaks is built essentially over 2-3ms after the
merger.

We should also note that when the dominant contribution
from the initial f1 and f3 peaks is removed, and hence one
is able to measure the power produced by the long evolution
of the HMNS, smaller peaks do appear on either side of f2,
and they are close to the f1 or f3 frequencies. It is then pos-
sible that these smaller-amplitude peaks represent the mani-
festation of the nonlinear couplings mentioned above and are
therefore carriers of interesting information on the properties
of the HMNS. Clearly, more work is needed to validate these
results and explore the long-term spectrum of the HMNS.

Another concrete indication that the toy model provides a
good description of the dynamics right after the merger is of-
fered by Fig. 10, whose top panel shows the full numerical-
relativity strain in the + polarization as computed for the bi-
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FIG. 8. Snapshots of the rest-mass density on the (x, y) plane for the binary ALF2-q10-M1325. From left to right, the panels refer to
five characteristic times: the initial time, the time of the merger, the time right after the merger (i.e., at t = 1.0ms), when the ` = m = 2
deformation in the HMNS starts to develop (i.e., at t = 3.0ms), and a later time (i.e., at t = 10.0ms). Note that only in the last panel is the
bar-deformed HMNS well defined and quasistationary.

on the (x, y) plane at five characteristic times: the initial time,
the time of the merger, the time right after the merger (i.e., at
t = 1.0ms), when the stellar core stops oscillating and an
` = m = 2 deformation in the HMNS starts to develop (i.e., at
t = 3.0ms), and then when the bar-deformed HMNS (cf., re-
gion in white) is well defined and with a quasistationary core
(i.e., at t = 10.0ms).

Following this phenomenology, it is possible to build a me-
chanical toy model, whose mathematical details are presented
in Appendix A, in which the object produced right after the
stellar contact is composed of an axisymmetric disk rotating
rapidly at a given angular frequency, say ⌦(t), to which two
spheres are connected (e.g., via a shaft) but are also free to
oscillate via a spring that connects them (see Fig. 17 in Ap-
pendix A). In such a system, the two spheres will either ap-
proach each other, decreasing the moment of inertia of the
system, or move away from each other, increasing the moment
of inertia. Because the total angular momentum is essentially
conserved, the system’s angular frequency will vary between
a minimum value ⌦1 (corresponding to the time when the two
spheres are at the largest separation) and a maximum value
⌦3 (corresponding to the time when the two spheres are at the
smallest separation). The values of ⌦1 and ⌦3 depend nonlin-
early on the properties of the system (i.e., the mass and radius
of the disk, and the mass of the spheres) but are such that
⌦2 = 1

2 (⌦1 + ⌦3), just as f2 ⇡ 1
2 (f1 + f3) in the PSDs we

have computed. Stated differently, the mechanical toy model
considered here will rotate with an angular frequency that is a
function of time and bounded by ⌦1 and ⌦3. Because the time
spent at a given frequency is ⌧⌦ ⌘ ⌦/(d⌦/dt), more time is
obviously spent at the frequencies ⌦(t) = ⌦1 and ⌦(t) = ⌦3,
where d⌦/dt ' 0. As a result, more power is expected to ap-
pear in the GW signal at these frequencies, hence producing
a low-frequency peak around ⌦1 and a high-frequency peak
around ⌦3. If dissipative processes are present, e.g., if the
spring is not ideal and the oscillations are damped, then the
angular frequency will tend secularly to ⌦2, i.e., ⌦(t) = ⌦2

for t ! 1 (cf., Fig. 18 below). As a result, most of the power
in the PSD will appear around ⌦2, with two main sidebands
at ⌦1 and ⌦3. Conversely, if dissipative processes are not
present, then the GW signal will have contributions at fre-
quencies ⌦2 and at its overtones ⌦

n

' (n/2)⌦2, such that

⌦2 ' 1
2 (⌦1 + ⌦3). (Note that in the presence of dissipative

processes a ' sign is needed in the estimate of ⌦2 because
the asymptotic frequency is only approximately the average
of ⌦1 and ⌦3; this is shown in the middle panel of Fig. 18
and reflects the fact that the system is not perfectly balanced.)
Overall, and as we will discuss in more detail in Appendix A,
this toy model can therefore account for both the presence of
the main peak f2 and for the two equally distant sidebands at
f1 and f3.

There is a simple way of testing whether these modes are
coming just from the immediate post-merger phase or are pro-
duced on longer time scales in terms of nonlinear couplings.
This is shown in Fig. 9, which reports again the PSDs for
the five EOSs and for a representative value of the mass,
i.e., M̄ = 1.30M�. Thin solid lines of different colors show
the same PSDs as in Fig. 7, with the two vertical dashed
lines marking the positions of the peak frequencies f1 and f2.
Shown instead with thick solid lines of the same colors are
the PSDs when the waveforms are restricted to the interval
t 2 [609, 5000]M� ⇡ [3.00, 24.63]ms, that is, when the first
3ms after the merger are cut from the time series. Remark-
ably, in this case the f1 and f3 peaks essentially disappear,
while the f2 peaks remain very strong and without consider-
able changes in frequency apart for the very soft EOSs. We
find this result a convincing validation of the correctness of
the toy model and a strong evidence that most of the power in
the f1 and f3 peaks is built essentially over 2-3ms after the
merger.

We should also note that when the dominant contribution
from the initial f1 and f3 peaks is removed, and hence one
is able to measure the power produced by the long evolution
of the HMNS, smaller peaks do appear on either side of f2,
and they are close to the f1 or f3 frequencies. It is then pos-
sible that these smaller-amplitude peaks represent the mani-
festation of the nonlinear couplings mentioned above and are
therefore carriers of interesting information on the properties
of the HMNS. Clearly, more work is needed to validate these
results and explore the long-term spectrum of the HMNS.

Another concrete indication that the toy model provides a
good description of the dynamics right after the merger is of-
fered by Fig. 10, whose top panel shows the full numerical-
relativity strain in the + polarization as computed for the bi-
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FIG. 8. Snapshots of the rest-mass density on the (x, y) plane for the binary ALF2-q10-M1325. From left to right, the panels refer to
five characteristic times: the initial time, the time of the merger, the time right after the merger (i.e., at t = 1.0ms), when the ` = m = 2
deformation in the HMNS starts to develop (i.e., at t = 3.0ms), and a later time (i.e., at t = 10.0ms). Note that only in the last panel is the
bar-deformed HMNS well defined and quasistationary.

on the (x, y) plane at five characteristic times: the initial time,
the time of the merger, the time right after the merger (i.e., at
t = 1.0ms), when the stellar core stops oscillating and an
` = m = 2 deformation in the HMNS starts to develop (i.e., at
t = 3.0ms), and then when the bar-deformed HMNS (cf., re-
gion in white) is well defined and with a quasistationary core
(i.e., at t = 10.0ms).

Following this phenomenology, it is possible to build a me-
chanical toy model, whose mathematical details are presented
in Appendix A, in which the object produced right after the
stellar contact is composed of an axisymmetric disk rotating
rapidly at a given angular frequency, say ⌦(t), to which two
spheres are connected (e.g., via a shaft) but are also free to
oscillate via a spring that connects them (see Fig. 17 in Ap-
pendix A). In such a system, the two spheres will either ap-
proach each other, decreasing the moment of inertia of the
system, or move away from each other, increasing the moment
of inertia. Because the total angular momentum is essentially
conserved, the system’s angular frequency will vary between
a minimum value ⌦1 (corresponding to the time when the two
spheres are at the largest separation) and a maximum value
⌦3 (corresponding to the time when the two spheres are at the
smallest separation). The values of ⌦1 and ⌦3 depend nonlin-
early on the properties of the system (i.e., the mass and radius
of the disk, and the mass of the spheres) but are such that
⌦2 = 1

2 (⌦1 + ⌦3), just as f2 ⇡ 1
2 (f1 + f3) in the PSDs we

have computed. Stated differently, the mechanical toy model
considered here will rotate with an angular frequency that is a
function of time and bounded by ⌦1 and ⌦3. Because the time
spent at a given frequency is ⌧⌦ ⌘ ⌦/(d⌦/dt), more time is
obviously spent at the frequencies ⌦(t) = ⌦1 and ⌦(t) = ⌦3,
where d⌦/dt ' 0. As a result, more power is expected to ap-
pear in the GW signal at these frequencies, hence producing
a low-frequency peak around ⌦1 and a high-frequency peak
around ⌦3. If dissipative processes are present, e.g., if the
spring is not ideal and the oscillations are damped, then the
angular frequency will tend secularly to ⌦2, i.e., ⌦(t) = ⌦2

for t ! 1 (cf., Fig. 18 below). As a result, most of the power
in the PSD will appear around ⌦2, with two main sidebands
at ⌦1 and ⌦3. Conversely, if dissipative processes are not
present, then the GW signal will have contributions at fre-
quencies ⌦2 and at its overtones ⌦

n

' (n/2)⌦2, such that

⌦2 ' 1
2 (⌦1 + ⌦3). (Note that in the presence of dissipative

processes a ' sign is needed in the estimate of ⌦2 because
the asymptotic frequency is only approximately the average
of ⌦1 and ⌦3; this is shown in the middle panel of Fig. 18
and reflects the fact that the system is not perfectly balanced.)
Overall, and as we will discuss in more detail in Appendix A,
this toy model can therefore account for both the presence of
the main peak f2 and for the two equally distant sidebands at
f1 and f3.

There is a simple way of testing whether these modes are
coming just from the immediate post-merger phase or are pro-
duced on longer time scales in terms of nonlinear couplings.
This is shown in Fig. 9, which reports again the PSDs for
the five EOSs and for a representative value of the mass,
i.e., M̄ = 1.30M�. Thin solid lines of different colors show
the same PSDs as in Fig. 7, with the two vertical dashed
lines marking the positions of the peak frequencies f1 and f2.
Shown instead with thick solid lines of the same colors are
the PSDs when the waveforms are restricted to the interval
t 2 [609, 5000]M� ⇡ [3.00, 24.63]ms, that is, when the first
3ms after the merger are cut from the time series. Remark-
ably, in this case the f1 and f3 peaks essentially disappear,
while the f2 peaks remain very strong and without consider-
able changes in frequency apart for the very soft EOSs. We
find this result a convincing validation of the correctness of
the toy model and a strong evidence that most of the power in
the f1 and f3 peaks is built essentially over 2-3ms after the
merger.

We should also note that when the dominant contribution
from the initial f1 and f3 peaks is removed, and hence one
is able to measure the power produced by the long evolution
of the HMNS, smaller peaks do appear on either side of f2,
and they are close to the f1 or f3 frequencies. It is then pos-
sible that these smaller-amplitude peaks represent the mani-
festation of the nonlinear couplings mentioned above and are
therefore carriers of interesting information on the properties
of the HMNS. Clearly, more work is needed to validate these
results and explore the long-term spectrum of the HMNS.

Another concrete indication that the toy model provides a
good description of the dynamics right after the merger is of-
fered by Fig. 10, whose top panel shows the full numerical-
relativity strain in the + polarization as computed for the bi-
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deformation in the HMNS starts to develop (i.e., at t = 3.0ms), and a later time (i.e., at t = 10.0ms). Note that only in the last panel is the
bar-deformed HMNS well defined and quasistationary.

on the (x, y) plane at five characteristic times: the initial time,
the time of the merger, the time right after the merger (i.e., at
t = 1.0ms), when the stellar core stops oscillating and an
` = m = 2 deformation in the HMNS starts to develop (i.e., at
t = 3.0ms), and then when the bar-deformed HMNS (cf., re-
gion in white) is well defined and with a quasistationary core
(i.e., at t = 10.0ms).

Following this phenomenology, it is possible to build a me-
chanical toy model, whose mathematical details are presented
in Appendix A, in which the object produced right after the
stellar contact is composed of an axisymmetric disk rotating
rapidly at a given angular frequency, say ⌦(t), to which two
spheres are connected (e.g., via a shaft) but are also free to
oscillate via a spring that connects them (see Fig. 17 in Ap-
pendix A). In such a system, the two spheres will either ap-
proach each other, decreasing the moment of inertia of the
system, or move away from each other, increasing the moment
of inertia. Because the total angular momentum is essentially
conserved, the system’s angular frequency will vary between
a minimum value ⌦1 (corresponding to the time when the two
spheres are at the largest separation) and a maximum value
⌦3 (corresponding to the time when the two spheres are at the
smallest separation). The values of ⌦1 and ⌦3 depend nonlin-
early on the properties of the system (i.e., the mass and radius
of the disk, and the mass of the spheres) but are such that
⌦2 = 1

2 (⌦1 + ⌦3), just as f2 ⇡ 1
2 (f1 + f3) in the PSDs we

have computed. Stated differently, the mechanical toy model
considered here will rotate with an angular frequency that is a
function of time and bounded by ⌦1 and ⌦3. Because the time
spent at a given frequency is ⌧⌦ ⌘ ⌦/(d⌦/dt), more time is
obviously spent at the frequencies ⌦(t) = ⌦1 and ⌦(t) = ⌦3,
where d⌦/dt ' 0. As a result, more power is expected to ap-
pear in the GW signal at these frequencies, hence producing
a low-frequency peak around ⌦1 and a high-frequency peak
around ⌦3. If dissipative processes are present, e.g., if the
spring is not ideal and the oscillations are damped, then the
angular frequency will tend secularly to ⌦2, i.e., ⌦(t) = ⌦2

for t ! 1 (cf., Fig. 18 below). As a result, most of the power
in the PSD will appear around ⌦2, with two main sidebands
at ⌦1 and ⌦3. Conversely, if dissipative processes are not
present, then the GW signal will have contributions at fre-
quencies ⌦2 and at its overtones ⌦

n

' (n/2)⌦2, such that

⌦2 ' 1
2 (⌦1 + ⌦3). (Note that in the presence of dissipative

processes a ' sign is needed in the estimate of ⌦2 because
the asymptotic frequency is only approximately the average
of ⌦1 and ⌦3; this is shown in the middle panel of Fig. 18
and reflects the fact that the system is not perfectly balanced.)
Overall, and as we will discuss in more detail in Appendix A,
this toy model can therefore account for both the presence of
the main peak f2 and for the two equally distant sidebands at
f1 and f3.

There is a simple way of testing whether these modes are
coming just from the immediate post-merger phase or are pro-
duced on longer time scales in terms of nonlinear couplings.
This is shown in Fig. 9, which reports again the PSDs for
the five EOSs and for a representative value of the mass,
i.e., M̄ = 1.30M�. Thin solid lines of different colors show
the same PSDs as in Fig. 7, with the two vertical dashed
lines marking the positions of the peak frequencies f1 and f2.
Shown instead with thick solid lines of the same colors are
the PSDs when the waveforms are restricted to the interval
t 2 [609, 5000]M� ⇡ [3.00, 24.63]ms, that is, when the first
3ms after the merger are cut from the time series. Remark-
ably, in this case the f1 and f3 peaks essentially disappear,
while the f2 peaks remain very strong and without consider-
able changes in frequency apart for the very soft EOSs. We
find this result a convincing validation of the correctness of
the toy model and a strong evidence that most of the power in
the f1 and f3 peaks is built essentially over 2-3ms after the
merger.

We should also note that when the dominant contribution
from the initial f1 and f3 peaks is removed, and hence one
is able to measure the power produced by the long evolution
of the HMNS, smaller peaks do appear on either side of f2,
and they are close to the f1 or f3 frequencies. It is then pos-
sible that these smaller-amplitude peaks represent the mani-
festation of the nonlinear couplings mentioned above and are
therefore carriers of interesting information on the properties
of the HMNS. Clearly, more work is needed to validate these
results and explore the long-term spectrum of the HMNS.

Another concrete indication that the toy model provides a
good description of the dynamics right after the merger is of-
fered by Fig. 10, whose top panel shows the full numerical-
relativity strain in the + polarization as computed for the bi-

-



B I N A R Y  B L A C K  H O L E  S I G N A L  C O M PA R E D  
T O  B I N A R Y  N E U T R O N  S TA R  S I G N A L

21

BBH

GAM2 GNH3 H4

ALF2 SLY APR4

• inspiral phase: well described by post-
Newtonian approximation + tides 

• post-merger bar-deformed hyper-
massive neutron star
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• Response of a given neutron star 
characterized by its tidal 
deformability or polarizability:
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Tidal deformability � for realistic EOS

� =
Q

E =
size of quadrupole deformation

strength of external tidal field

� =
2

3
k2R

5

Calculate via linear Y20 perturbation of spherical neutron star
Q and E defined by external field of perturbed star
leading terms � r2 and � r�3 when far from star

For given realistic EOS, � is function of M
(similar to radius or moment of inertia)
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• k2 Relativistic love numbers (Damour 1983) 

• Mass distribution inside the star changes its 

gravitational potential 

• R radius of star
�6

Tidally deformed starsT I D A L  D E F O R M A B I L I T Y  O F  
N E U T R O N  S TA R S

• tidal field ε of one of one 
companion induces a quadrupole 
moment Q in the other 

• in the adiabatic approximation                      

• λ(m) is tidal deformability, k2(m) 
is the 2nd second Love number 
(varies from 0.05-0.15) and R is 
the NS radius (8 km-16 km) 

• dimensionless tidal deformability
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⇤ = G�(Gm/c2)�5, ⇤ ⇠ 100–6000
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4

Hz [18], the tidal tensors Eij of one component of the
binary will start to induce a significant quadrupole mo-
ment Qij in the other. In the adiabatic approximation,
the two are related by [44, 64, 65]

Qij = ��(m) Eij , (3)

where m is the mass of the neutron star that is experienc-
ing the quadrupole deformation, and the function �(m) is
the tidal deformability, which is determined by the EOS.
The deformations of the two neutron stars in turn a↵ect
the orbital motion, and this is one way in which the EOS
gets imprinted upon the gravitational waveform. The
deformability �(m) is related to the second Love number
k2(m) and the neutron star radius R(m) through �(m) =
(2/3) k2(m)R5(m). Tidal e↵ects only enter the phase
starting at 5PN order [65], but as mentioned before, the

prefactors are sizable (�/M5 / (R/M)5 ⇠ 102 � 105),
which is why we can hope to infer information on the
EOS from the tidal deformation.

The e↵ects of tidal deformations on the orbital motion
were calculated up to 1PN (or 6PN in phase) by Vines,
Flanagan, and Hinderer [44], and more recently to 2.5PN
(or 7.5PN in phase) by Damour, Nagar, and Villain [19].
The latter expression is what we will be using in this
paper; for completeness we reproduce it here. In terms
of the characteristic velocity v = (⇡Mf)1/3, one has

 (v) =  PP(v) + tidal(v), (4)

where  PP(v) is the phase for the inspiral of point parti-
cles, and  tidal(v) is the contribution from tidal e↵ects.
The latter takes the form

 tidal(v) =
3
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where XA = mA/M , A = 1, 2, and �A = �(mA). We
should note that the calculation leading to this expression
ignores (i) contributions from higher-order multipoles as
these are estimated to give small corrections, and (ii) a
number of as yet unknown functions that appear in the
7PN phase contribution; in [19] these too were argued
to be negligible and we refer to that paper for details.
Contributions to the phase at increasing PN order, for a
BNS system of (1.35, 1.35)M� with a sti↵ (MS1) EOS,
are illustrated in Fig. 4.

For the function �(m), in our simulated signals we will
use quartic polynomial fits to predictions corresponding
to di↵erent EOS from Hinderer et al. [18], with maximum
residuals of ⇠ 0.02 (which will turn out to be negligible
compared to the measurability of �). Examples of such
fits for a soft (labeled SQM3), a moderate (H4), and a
sti↵ EOS (MS1) are shown in Fig. 1.

C. Quadrupole-monopole e↵ects

As mentioned before, tidal e↵ects are not the only way
the EOS enters into the gravitational waveform. If a
neutron star is spinning, it takes on an oblate shape. As-
suming an axisymmetric mass distribution with respect
to the axis of rotation, the deformation can be expressed

to leading order by means of a dimensionless quadrupole
moment parameter q, defined as [50]

q = �5

2
lim
r!1

⇣ r

M

⌘3
Z 1

�1
⌫(r, ✓)P2(cos ✓) d cos ✓, (6)

where P2(x) = (3x2 � 1)/2 is the second Legendre poly-
nomial, and ⌫ is a potential related to the metric of
a stationary axially symmetric body; more specifically,
the line element in the form introduced by Komatsu-
Eriguchi-Hachisu [66] reads:

ds2 = �e�2⌫dt2 + r2 sin2 ✓ e2� (d�� !dt)2

+ e2↵
�
dr2 + r2d✓2

�
, (7)

where the undetermined ↵,�, ⌫ are all functions of (r, ✓).
The quadrupole moment q is the leading-order (1/r3)
coe�cient of the second multipole in the asymptotic ex-
pansion of ⌫(r, ✓) and can be calculated numerically. This
quantity is the general-relativistic equivalent of the New-
tonian mass quadrupole moment.
Since a sti↵er EOS implies a larger neutron star (NS)

radius for a given mass, the quadrupole moment increases
in absolute value with the sti↵ness of the EOS. Examples
of q estimates for di↵erent EOS were calculated numer-
ically in [50] based on the expressions of Ryan [67, 68].

4

Hz [18], the tidal tensors Eij of one component of the
binary will start to induce a significant quadrupole mo-
ment Qij in the other. In the adiabatic approximation,
the two are related by [44, 64, 65]

Qij = ��(m) Eij , (3)

where m is the mass of the neutron star that is experienc-
ing the quadrupole deformation, and the function �(m) is
the tidal deformability, which is determined by the EOS.
The deformations of the two neutron stars in turn a↵ect
the orbital motion, and this is one way in which the EOS
gets imprinted upon the gravitational waveform. The
deformability �(m) is related to the second Love number
k2(m) and the neutron star radius R(m) through �(m) =
(2/3) k2(m)R5(m). Tidal e↵ects only enter the phase
starting at 5PN order [65], but as mentioned before, the

prefactors are sizable (�/M5 / (R/M)5 ⇠ 102 � 105),
which is why we can hope to infer information on the
EOS from the tidal deformation.

The e↵ects of tidal deformations on the orbital motion
were calculated up to 1PN (or 6PN in phase) by Vines,
Flanagan, and Hinderer [44], and more recently to 2.5PN
(or 7.5PN in phase) by Damour, Nagar, and Villain [19].
The latter expression is what we will be using in this
paper; for completeness we reproduce it here. In terms
of the characteristic velocity v = (⇡Mf)1/3, one has

 (v) =  PP(v) + tidal(v), (4)

where  PP(v) is the phase for the inspiral of point parti-
cles, and  tidal(v) is the contribution from tidal e↵ects.
The latter takes the form

 tidal(v) =
3

128⌘
v�5

2X

A=1

�A

M5XA


�24 (12� 11XA) v

10 +
5

28

�
3179� 919XA � 2286X2

A + 260X3
A

�
v12

+24⇡(12� 11XA)v
13

�24

✓
39927845

508032
� 480043345

9144576
XA +

9860575

127008
X2

A � 421821905

2286144
X3

A +
4359700

35721
X4

A � 10578445

285768
X5

A

◆
v14

+
⇡

28

�
27719� 22127XA + 7022X2

A � 10232X3
A

�
v15

i
, (5)
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where XA = mA/M , A = 1, 2, and �A = �(mA). We
should note that the calculation leading to this expression
ignores (i) contributions from higher-order multipoles as
these are estimated to give small corrections, and (ii) a
number of as yet unknown functions that appear in the
7PN phase contribution; in [19] these too were argued
to be negligible and we refer to that paper for details.
Contributions to the phase at increasing PN order, for a
BNS system of (1.35, 1.35)M� with a sti↵ (MS1) EOS,
are illustrated in Fig. 4.

For the function �(m), in our simulated signals we will
use quartic polynomial fits to predictions corresponding
to di↵erent EOS from Hinderer et al. [18], with maximum
residuals of ⇠ 0.02 (which will turn out to be negligible
compared to the measurability of �). Examples of such
fits for a soft (labeled SQM3), a moderate (H4), and a
sti↵ EOS (MS1) are shown in Fig. 1.

C. Quadrupole-monopole e↵ects

As mentioned before, tidal e↵ects are not the only way
the EOS enters into the gravitational waveform. If a
neutron star is spinning, it takes on an oblate shape. As-
suming an axisymmetric mass distribution with respect
to the axis of rotation, the deformation can be expressed

to leading order by means of a dimensionless quadrupole
moment parameter q, defined as [50]
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where the undetermined ↵,�, ⌫ are all functions of (r, ✓).
The quadrupole moment q is the leading-order (1/r3)
coe�cient of the second multipole in the asymptotic ex-
pansion of ⌫(r, ✓) and can be calculated numerically. This
quantity is the general-relativistic equivalent of the New-
tonian mass quadrupole moment.
Since a sti↵er EOS implies a larger neutron star (NS)

radius for a given mass, the quadrupole moment increases
in absolute value with the sti↵ness of the EOS. Examples
of q estimates for di↵erent EOS were calculated numer-
ically in [50] based on the expressions of Ryan [67, 68].
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• Spin-induced deformation leads to quadrupole
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FIG. 1: The tidal deformability parameter �(m) as a func-
tion of neutron star mass for three di↵erent EOS: a soft
one (SQM3), a moderate one (H4), and a sti↵ one (MS1).
Adapted from [18]. Curves are fitted quartic polynomials,
whose residuals are shown in the lower subplot. Only masses
within the unshaded region [1, 2]M� will be considered in our
analyses.

These demonstrated the dependence on the dimension-
less spin �, which for a fixed NS mass can be fit very well
up to the maximum spin value �max (also dependent on
the EOS) by a quadratic rule:

q ' �a�2, (8)

where a = aEOS(m) is a mass-dependent parameter. Fur-
ther evidence to support the quadratic relation Eq. (8) is
given in [69, 70]. The authors of [69, 71] also point out a
spin correction in the identification of multipole moments
that was previously overlooked; this correction preserves
the quadratic spin behaviour of Eq. (8), and vanishes in
the slow-rotation limit. Assuming that this relation will
hold for any EOS, we will only be concerned with the
spin-independent parameter a which, similar to the tidal
deformability parameter �, has a functional dependence
on the neutron mass that is determined by the EOS.

The e↵ect of such a quadrupole moment on the grav-
itational waveform emitted by a binary system was de-
rived in [49]. To Newtonian order it introduces an ad-
ditional coupling in the e↵ective gravitational potential,
between the mass quadrupole of each spinning neutron
star and the mass of its companion, whence the name
“quadrupole-monopole (QM) e↵ect”. In the stationary
phase approximation, the additional contribution to the
GW phase due to the QM interaction reads:

 QM(v) = � 30

128⌘
�QMv�1, (9)

making it of 2PN order in phase. The parameter �QM

FIG. 2: The quadrupole parameter a(m) as a function of neu-
tron star mass for the three di↵erent EOSs in Fig. 1. The hor-
izontal dashed line indicates the value for black holes, which is
a = 1 [74]. Only masses within the unshaded region [1, 2]M�
will be considered in our analyses.

depends on masses and spins through
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In the last line we used the rule (8); we see that with
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estimated in [73] for several EOSs to be at the 1% level.
Together with Eqs. (10) and (9), this then allows us to
compute the QM contribution to the phase. Fig. 2 shows
a(m) for the EOSs in Fig. 1. QM contributions to the
phase are expected to be subdominant compared to the
tidal e↵ects of Sec. II B, even for relatively fast spinning
NS, as shown in Fig. 4.
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that was previously overlooked; this correction preserves
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the slow-rotation limit. Assuming that this relation will
hold for any EOS, we will only be concerned with the
spin-independent parameter a which, similar to the tidal
deformability parameter �, has a functional dependence
on the neutron mass that is determined by the EOS.
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rived in [49]. To Newtonian order it introduces an ad-
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 QM(v) = � 30

128⌘
�QMv�1, (9)

making it of 2PN order in phase. The parameter �QM

FIG. 2: The quadrupole parameter a(m) as a function of neu-
tron star mass for the three di↵erent EOSs in Fig. 1. The hor-
izontal dashed line indicates the value for black holes, which is
a = 1 [74]. Only masses within the unshaded region [1, 2]M�
will be considered in our analyses.

depends on masses and spins through

�QM =� 5

2

X

A=1,2

qA
⇣mA

M

⌘2 h
3(�̂A · L̂)2 � 1

i
(10)

'5

2

X

A=1,2

a(mA)
⇣mA

M

⌘2 h
3(�̂A · L̂)2 � 1

i
�2
A ,

where the unit vectors �̂A are the direction of the spins.
In the last line we used the rule (8); we see that with
this assumption,  QM(v) is quadratic in the component
spins. Finally, note that in the case of (anti-)aligned
spins, which we will assume throughout, 3(�̂A · L̂)2�1 =
2.
As mentioned above, in our simulations we will use

predictions for �(m) corresponding to di↵erent EOSs
from [18]. In order to compute a(m), we make use of
the recently discovered phenomenological Love-Q rela-
tion [72, 73], which is believed to hold irrespective of the
EOS:

ln a(m) = 0.194 + 0.0936 ln
�

m5
+ 0.0474

✓
ln

�

m5

◆2

�4.21⇥ 10�3

✓
ln

�

m5

◆3

+ 1.23⇥ 10�4

✓
ln

�

m5

◆4

.

(11)

The relative fractional errors due to the universal fit were
estimated in [73] for several EOSs to be at the 1% level.
Together with Eqs. (10) and (9), this then allows us to
compute the QM contribution to the phase. Fig. 2 shows
a(m) for the EOSs in Fig. 1. QM contributions to the
phase are expected to be subdominant compared to the
tidal e↵ects of Sec. II B, even for relatively fast spinning
NS, as shown in Fig. 4.

5

FIG. 1: The tidal deformability parameter �(m) as a func-
tion of neutron star mass for three di↵erent EOS: a soft
one (SQM3), a moderate one (H4), and a sti↵ one (MS1).
Adapted from [18]. Curves are fitted quartic polynomials,
whose residuals are shown in the lower subplot. Only masses
within the unshaded region [1, 2]M� will be considered in our
analyses.

These demonstrated the dependence on the dimension-
less spin �, which for a fixed NS mass can be fit very well
up to the maximum spin value �max (also dependent on
the EOS) by a quadratic rule:

q ' �a�2, (8)

where a = aEOS(m) is a mass-dependent parameter. Fur-
ther evidence to support the quadratic relation Eq. (8) is
given in [69, 70]. The authors of [69, 71] also point out a
spin correction in the identification of multipole moments
that was previously overlooked; this correction preserves
the quadratic spin behaviour of Eq. (8), and vanishes in
the slow-rotation limit. Assuming that this relation will
hold for any EOS, we will only be concerned with the
spin-independent parameter a which, similar to the tidal
deformability parameter �, has a functional dependence
on the neutron mass that is determined by the EOS.

The e↵ect of such a quadrupole moment on the grav-
itational waveform emitted by a binary system was de-
rived in [49]. To Newtonian order it introduces an ad-
ditional coupling in the e↵ective gravitational potential,
between the mass quadrupole of each spinning neutron
star and the mass of its companion, whence the name
“quadrupole-monopole (QM) e↵ect”. In the stationary
phase approximation, the additional contribution to the
GW phase due to the QM interaction reads:

 QM(v) = � 30

128⌘
�QMv�1, (9)

making it of 2PN order in phase. The parameter �QM

FIG. 2: The quadrupole parameter a(m) as a function of neu-
tron star mass for the three di↵erent EOSs in Fig. 1. The hor-
izontal dashed line indicates the value for black holes, which is
a = 1 [74]. Only masses within the unshaded region [1, 2]M�
will be considered in our analyses.

depends on masses and spins through

�QM =� 5

2

X

A=1,2

qA
⇣mA

M

⌘2 h
3(�̂A · L̂)2 � 1

i
(10)

'5

2

X

A=1,2

a(mA)
⇣mA

M

⌘2 h
3(�̂A · L̂)2 � 1

i
�2
A ,

where the unit vectors �̂A are the direction of the spins.
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this assumption,  QM(v) is quadratic in the component
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The relative fractional errors due to the universal fit were
estimated in [73] for several EOSs to be at the 1% level.
Together with Eqs. (10) and (9), this then allows us to
compute the QM contribution to the phase. Fig. 2 shows
a(m) for the EOSs in Fig. 1. QM contributions to the
phase are expected to be subdominant compared to the
tidal e↵ects of Sec. II B, even for relatively fast spinning
NS, as shown in Fig. 4.
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where the unit vectors �̂A are the direction of the spins.
In the last line we used the rule (8); we see that with
this assumption,  QM(v) is quadratic in the component
spins. Finally, note that in the case of (anti-)aligned
spins, which we will assume throughout, 3(�̂A · L̂)2�1 =
2.
As mentioned above, in our simulations we will use

predictions for �(m) corresponding to di↵erent EOSs
from [18]. In order to compute a(m), we make use of
the recently discovered phenomenological Love-Q rela-
tion [72, 73], which is believed to hold irrespective of the
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The relative fractional errors due to the universal fit were
estimated in [73] for several EOSs to be at the 1% level.
Together with Eqs. (10) and (9), this then allows us to
compute the QM contribution to the phase. Fig. 2 shows
a(m) for the EOSs in Fig. 1. QM contributions to the
phase are expected to be subdominant compared to the
tidal e↵ects of Sec. II B, even for relatively fast spinning
NS, as shown in Fig. 4.

Yagi, Yunes 2013a, 2013b

a(m) depends really only on tidal deformability
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FIG. 3: The frequencies fLSO and fcontact as functions of m1,
m2 for the EOS shown in Fig. 1.

D. Termination of the waveform at contact

In the recent simulations [25, 26], the waveform was
cut o↵ at a frequency corresponding to the last stable
circular orbit (LSO) in the point particle limit, given by

fLSO =
1

63/2⇡M
. (12)

However, as we shall see below, it will often happen
that the two neutron stars attain physical contact be-
fore the corresponding distance between the components
is reached. In this paper, we instead impose the cuto↵

fcut = min{fLSO, fcontact}, (13)

where, using Kepler’s third law, the “contact frequency”
is given by

fcontact =
1

⇡

✓
M

R(m1) +R(m2)

◆1/2

. (14)

We stress that the termination condition (13) is still
a heuristic one, but it will be more realistic than termi-
nation at fLSO. Moreover, the length of the waveform
itself carries physical information [75], in this case on the
EOS, which we wish to incorporate [84]. On the other
hand, shorter waveforms have a smaller number of cycles
from which information can be extracted; when we come
to the results of our simulations we will see which e↵ect
wins out.

In order to compute the radii R(m1), R(m2), we again
make use of a recently discovered phenomenological re-
lation, this time between the compactness C = m/R and
� [76]:
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FIG. 4: Phase contributions of the QM e↵ect and tidal e↵ects
up to di↵erent PN orders as functions of GW frequency for
a (1.35, 1.35)M� binary with a sti↵ EOS (MS1). The QM
contribution from each NS scales quadratically with its spin
and is shown here for �1 = �2 = 0.1. The dashed vertical
lines indicate the contact and LSO frequencies.

For a given EOS (i.e a given relationship �(m)), the
above expression gives us R(m), from which the con-
tact frequency (14) is obtained. The relative error in
the compactness (and hence in the radius) due to the fit
of Eq. (15) was found to be at the 2% level, implying a
similar error in the contact frequency.
Fig. 3 shows the dependence of fLSO and fcontact on

component massesm1, m2 for the EOS considered above.
Note how in the astrophysically relevant range mA 2
[1, 2]M�, A = 1, 2, it often happens that fcontact < fLSO,
especially for low masses and for the sti↵er EOS (MS1)
which can support larger neutron star radii.

III. BAYESIAN METHODS FOR INFERRING
THE NEUTRON STAR EQUATION OF STATE

In this section we present two qualitatively di↵erent
Bayesian methods that one may use to acquire informa-
tion on the neutron star equation of state: (i) hypothesis
ranking for di↵erent proposed EOS based on how well
each of them matches the available data, and (ii) the es-
timation of parameters which for a given EOS will be the
same across sources. Both of these allow us to combine
information from multiple detections so as to arrive at a
stronger result. These methods were already explained
in [25]; for completeness we recall the basic ideas.

A. Hypothesis ranking

Given a set of (finitely many) EOS models
{M1,M2, . . . ,MK}, we will be interested in ranking them
in the light of the available data. The ranking process
will be on a set of hypotheses {Hi; i = 1, . . . ,K}, where
Hi states that Mi is the true model for the neutron star

Agathos+ 2015
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low-spin case and (1.0, 0.7) in the high-spin case. Further
analysis is required to establish the uncertainties of these
tighter bounds, and a detailed studyof systematics is a subject
of ongoing work.
Preliminary comparisons with waveform models under

development [171,173–177] also suggest the post-
Newtonian model used will systematically overestimate
the value of the tidal deformabilities. Therefore, based on
our current understanding of the physics of neutron stars,
we consider the post-Newtonian results presented in this
Letter to be conservative upper limits on tidal deform-
ability. Refinements should be possible as our knowledge
and models improve.

V. IMPLICATIONS

A. Astrophysical rate

Our analyses identified GW170817 as the only BNS-
mass signal detected in O2 with a false alarm rate below
1=100 yr. Using a method derived from [27,178,179], and
assuming that the mass distribution of the components of
BNS systems is flat between 1 and 2 M⊙ and their
dimensionless spins are below 0.4, we are able to infer
the local coalescence rate density R of BNS systems.
Incorporating the upper limit of 12600 Gpc−3 yr−1 from O1
as a prior, R ¼ 1540þ3200

−1220 Gpc−3 yr−1. Our findings are

consistent with the rate inferred from observations of
galactic BNS systems [19,20,155,180].
From this inferred rate, the stochastic background of

gravitational wave s produced by unresolved BNS mergers
throughout the history of the Universe should be compa-
rable in magnitude to the stochastic background produced
by BBH mergers [181,182]. As the advanced detector
network improves in sensitivity in the coming years, the
total stochastic background from BNS and BBH mergers
should be detectable [183].

B. Remnant

Binary neutron star mergers may result in a short- or long-
lived neutron star remnant that could emit gravitational
waves following the merger [184–190]. The ringdown of
a black hole formed after the coalescence could also produce
gravitational waves, at frequencies around 6 kHz, but the
reduced interferometer response at high frequencies makes
their observation unfeasible. Consequently, searches have
been made for short (tens of ms) and intermediate duration
(≤ 500 s) gravitational-wave signals from a neutron star
remnant at frequencies up to 4 kHz [75,191,192]. For the
latter, the data examined start at the time of the coalescence
and extend to the end of the observing run on August 25,
2017. With the time scales and methods considered so far
[193], there is no evidence of a postmerger signal of

FIG. 5. Probability density for the tidal deformability parameters of the high and low mass components inferred from the detected
signals using the post-Newtonian model. Contours enclosing 90% and 50% of the probability density are overlaid (dashed lines). The
diagonal dashed line indicates the Λ1 ¼ Λ2 boundary. The Λ1 and Λ2 parameters characterize the size of the tidally induced mass
deformations of each star and are proportional to k2ðR=mÞ5. Constraints are shown for the high-spin scenario jχj ≤ 0.89 (left panel) and
for the low-spin jχj ≤ 0.05 (right panel). As a comparison, we plot predictions for tidal deformability given by a set of representative
equations of state [156–160] (shaded filled regions), with labels following [161], all of which support stars of 2.01M⊙. Under the
assumption that both components are neutron stars, we apply the function ΛðmÞ prescribed by that equation of state to the 90% most
probable region of the component mass posterior distributions shown in Fig. 4. EOS that produce less compact stars, such as MS1 and
MS1b, predict Λ values outside our 90% contour.

PRL 119, 161101 (2017) P HY S I CA L R EV I EW LE T T ER S week ending
20 OCTOBER 2017

161101-7

Abbott+, PRL 119, 161101 (2017)
Black hole companion cannot be ruled out

TaylorF2 - a PN-based model used, Λ1 and Λ2 independent
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• first step: “minimal assumptions” 

• re-calibrated Virgo data 
(reduced calibration uncertainty) 

• known source location: 
NGC4993 

• more accurate waveform 
models 

• reduced lower frequency cutoff: 
23 Hz, down from 30 Hz 

• second step 

• source contains two neutron 
stars 

• neutron star spins are low,        
χ < 0.05 

• both stars are described by the 
same equation of state 

• max total mass of the neutron 
star is at least ~ 2 solar mass
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model tidal effects spin-induced 
quadrupole

precession comment

TaylorF2 (1) 6PN (5) none none basic

SEOBNRT (2)
matched to NR 
simulations (6)

none none
relevant 

physical effects

PhenomDNRT 
(3)

matched to NR 
simulations (6)

none none
relevant 

physical effects
PhenomPNRT 

(4)
matched to NR 
simulations (6)

3PN yes
many physical 

effects

(1) BSS+(1991), Bohe+ (2013, 2015), Arun+ (2009), Mikoczi+ (2005), Mishra+ (2016) 
(2) Bohe+ (2017), Pürrer (2014),   
(3) Husa+ (2016), Khan+ (2016) 
(4) Hannam+ (2014) 
(5) Vines+ (2017) 
(6) Dietrich+ (2016, 2018) Abbott+, arXiv 1805.11579 
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the TaylorT2 approximant does not capture the phase
evolution in the strong field region, failing for ω̂≳ 0.06,
which is approximately the contact frequency [17].

IV. TIME-DOMAIN TIDAL APPROXIMANT

A closed-form expression for ϕT is obtained using the
fitting formula

ϕT ¼ −κTeff
cNewt
XAXB

x5=2

× ν
1þ n1xþ n3=2x3=2 þ n2x2 þ n5=2x5=2 þ n3x3

1þ d1xþ d3=2x3=2

ð5Þ

Demanding that Eq. (5) reproduces Eq. (4) in a low
frequency expansion, we set d1 ¼ ðn1 − c1Þ. The other
coefficients are fit to NR data. Note that for simplicity
Eq. (5) does not contain tidal terms corresponding to higher
multipoles [29], and the dependency from XA;B of the
higher effective PN terms is ignored. This is justified since
we seek an effective expression of the phase; the coef-
ficients of the latter could be further improved using more
simulations with various mass ratios.
The fit is performed on a dataset spanning the interval

ω̂ ∈ ½0; 0.17&. Eq. (4) is used for ω̂ ≤ 0.0074, while the tidal
EOB waveforms of [7] are used for ω̂ ≥ ∈½0.0074; 0.04&.
The datasets are connected such that phase differences near
the interval boundaries are minimal. We interpolate the data
on a grid consisting of 10000, 5000, 500 points in the three
intervals, respectively. Although the final fit depends only
weakly on the exact number of points of the interpolating
grid, using more points at lower frequencies helps con-
straining the fit in that regime.Our approximant is defined by
Eq. (5)with the fitting coefficients ðn1; n3=2; n2; n5=2; n3Þ ¼
ð−17.941; 57.983; −298.876; 964.192; −936.844Þ, and
d3=2 ¼ 43.446.
A time-domain approximant of a BNS configuration is

computed by prescribing κTeff and adding Eq. (5) to a BBH
baseline, i.e. to ϕ0. To construct a generic spin-aligned BNS
configurations with spin χeff we use a BBH waveform that
includes already the spin contribution, i.e. use as baseline the
GWphase of aBBH setupwhich has the same dimensionless
spin as the BNS configuration which we are going to model.
The time-domain phasing is then calculated by numerically
integrating t ¼

R
dϕ=ω̂ðϕÞ in order to obtain a parametric

representation of the tidal phase.We stop the integration once
ϕðω̂Þ reaches its maximum.
Examples of such constructed waveforms are reported in

Fig. 2. There, we use the nonspinning BBH waveforms
from the SXS-database [32,33], in particular setup 66 for
the equal mass cases and setup 7 for the q ¼ XA=XB ¼ 1.5
configuration. In order to compare with the BNS configu-
ration with χeff ¼ þ0.123, we add to the nonspinning NR
BBH curve the spin-orbit contributions given in Eq. (417)

of [28]. In general, a spinning binary black hole baseline
should be used.
In most cases, our new waveforms are compatible with

the NR data within the estimated uncertainties. The
proposed tidal approximant remains accurate also for
longer waveforms. Phase differences with respect to hybrid
tidal EOB-NR waveforms and accumulated over the last
300 orbits before merger are of the order of ∼1 rad; see
[26]. In the nonspinning cases, our results can be directly
compared to the tidal EOB waveforms of [7,8] (see green
lines in Fig. 2; comparable performances are observed in
spite of the simplicity of our model. The fit gives a good
prediction also for the unequal mass case, although only the
leading-order effect of the mass ratio is taken into account;
see Eq. (2). Also, while we use NR data up to ω̂ ¼ 0.17, the
model remains accurate for BNSs with smaller κTeff that
merge at higher frequencies. Let us stress that the model
performances are independent of the BBH baseline,
provided the latter is a faithful representation of BBH
waveforms.

V. FREQUENCY-DOMAIN TIDAL
APPROXIMANT

In the frequency domain, ~hðfÞ ¼ f−7=6 ~AðfÞe−iΨðfÞ.
The expression of the tidal phase is computed using the
stationary phase approximation (SPA) [29]

FIG. 2. Comparison of NR simulations with model waveforms
obtained following Eq. (3). The panels show the real part of the
GW signals [NR data (gray), tidal approximant (orange)]. We
also include the phase between the NR data with respect to our
tidal approximant Eq. (5), to Taylor T2 tidal approximant Eq. (4)
(cyan), and for some cases to EOB (green dashed [8], green dot
dashed [7]. We also indicate the estimated uncertainty of the NR
data (blue shaded) and the alignment region (gray shaded).
Simulations use the same notation as in Fig. 1 except for the
unequal mass case of [14] with EOSMAþMB

.

CLOSED-FORM TIDAL APPROXIMANTS FOR BINARY … PHYSICAL REVIEW D 96, 121501(R) (2017)

121501-3

RAPID COMMUNICATIONS

Dietrich, Hinderer Phys. Rev. D 95.124006
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EOB-NR comparison: phasing.—The EOB resummed
tidal waveform is obtained following Refs. [2,49]. We
compare the EOB and NR quadrupole waveforms Rh22,
with Rðhþ − ih×Þ ¼

P
lmRhlm−2Ylm, by using a stan-

dard (time and phase) alignment procedure in the time
domain. Relative time and phase shifts are determined by
minimizing the L2 distance between the EOB and NR
phases integrated on a time interval corresponding to the
dimensionless frequency interval Iω ¼ MðωL;ωRÞ ¼
ð0.04; 0.06Þ for all EOS, except Γ2164, for which Iω ¼
ð0.0428; 0.06Þ as the simulation starts at higher GW
frequency. Such a choice for Iω allows one to average
out the phase oscillations linked to the residual eccentricity
(∼0.01) of the NR simulations.
A sample of time-domain comparisons for three repre-

sentative κT2 ’s is shown in Fig. 3. Top panels compare the
TEOBResum and NR waveforms real part and modulus.
Bottom panels show (i) phase and relative amplitude
differences between TEOBResum and NR, (ii) phase differ-
ence between the tidal Taylor T4 with NLO tides and 3PN
waveform (TT4) and NR, and (iii) NR phase uncertainty
(shaded region). The two vertical (dot-dashed) lines indi-
cate the alignment interval; as in Fig. 2, the markers
indicate the EOB (red) and NR (blue) mergers. The
crossing of the radius of the TEOBResum last stable orbit
(LSO) is indicated by a green marker. The time-domain
comparisons shows that for all κT2 the TEOBResum model is
compatible with NR data up to the merger within NR
uncertainties (at the 2σ level or better, both in phase and
amplitude). Note that the TT4 phasing performs system-
atically worse than TEOBResum.
Figure 3 is quantitatively completed by Table I, which

compares the phase differences ΔϕX ≡ ϕX − ϕNR with
X ¼ TT4, TEOBNNLO, TEOBResum evaluated (after time
alignment) at the moment of NR merger. The NR uncer-
tainty at merger δϕNR

NRmrg is also listed in the table. These
numbers indicate how the disagreement with NR system-
atically decreases when successively considering the
analytical models TT4, TEOBNNLO, and TEOBResum.
Such a hierarchy of qualities among analytical models is
confirmed by the gauge-invariant phasing diagnostic

QωðωÞ≡ ω2= _ω [13,15]. To clean up the eccentricity-driven
oscillations in the NR phase, we based our computation of
QNR

ω by starting from a simple, PN-inspired, six-parameter
fit of the NR frequency as a rational function of x ¼
½νðtc − tÞ=5þ d2&−1=8 (similarly to Ref. [50]). For each κT2
we find QNR

ω ≈QTEOBResum
ω < QTEOBNNLO

ω < QTT4
ω < QBBH

ω
(see Fig. 4 for SLy135).
Merger characteristics.—The TEOBResum model, in

addition to giving good energetics EbðjÞ and phasing
ϕðtÞ up to NR mergers, has the remarkable feature of
intrinsically predicting the frequency location and physical
characteristics of mergers in good quantitative agreement
with NR results. This can have important consequences for
building analytical GW templates. More precisely, the two
quasiuniversal functional relations [46] Emrg

b ðκT2 Þ and
MωmrgðκT2 Þ [as well as jmrgðκT2 ) and the waveform ampli-
tude at merger Amrg

22 ðκT2 Þ≡ jRhmrg
22 jðκT2 Þ] predicted by

TEOBResum are close to the NR ones and significantly
closer than those predicted by TEOBNNLO (while PN does
not predict anymerger characteristic). ForEmrg

b and jmrg, see
Fig. 2. For MωmrgðκT2 Þ, the ratio ωmrg

NR =ω
mrg
TEOBResum

ranges
from 1.06 (Γ2164) to 1.17 (H4). For Amrg

22 , the ratio
Amrg
22NR=A

mrg
22TEOBResum

ranges from 1.05 (Γ2151) to 1.15 (2B)
(see also Fig. 3). Finally, after alignment, the difference
Δtmrg ¼ tTEOBResum

mrg − tNRmrg between EOB and NR merger
times is only ∼ð−30M;−8M;−9M;þ34M;þ51M;
þ92MÞ for the sixmodels. Such agreements are remarkable,
as no NR tuning of the EOB waveform was performed.

FIG. 3 (color online). Phasing and amplitude comparison (versus NR retarded time) between TEOBResum, NR, and the phasing of TT4 for
three representativemodels.Waves are aligned on a timewindow (vertical dot-dashed lines) corresponding to Iω ≈ ð0.04; 0.06Þ. Themarkers in
the bottom panels indicate the crossing of the TEOBResum LSO radius, NR (also with a dashed vertical line), and EOB merger moments.

FIG. 4 (color online). Phasing comparison of various
analytical models and with NR data using the gauge-invariant
quantity Qω ≡ ω2= _ω.
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effects, using the AT result of Ref. [31] for models (I)–(III)
and using a similar treatment as for the quadrupole in the
DT model [34].
The upper panel of Fig. 3 shows the NR and TEOB

waveforms [using Eqs. (4)] for q ¼ 2; the lower panel
focuses on the phasing, where the blue shaded region spans
the NR error δϕtot computed after aligning the data over the
first five GW cycles. The net size of the NS matter effects is
∼2 rad as determined by comparing to a BH-BH EOB
waveform. The impact of DT versus only AT effects is
quantified by contrasting the AT 2PN results (orange curve)
with the DT model (red region), where the uncertainty band
results from different EOB resummations. The DT model
thus leads to a substantial improvement (here ∼20% at
tApeak) in capturing the matter effects in the late inspiral.
While the overall performance of this model is comparable
to that of the enhanced AT model (III) (solid blue curve),
the key difference is that it is a prediction from the
underlying NS physics whereas (III) relies on enhancing
the tidal field strength through the adjustable term as seen
by comparing to the GSF result (dashed blue curve).

We obtain similar results for the other NS-BH configu-
rations [52] for which, however, the size of the tidal effects
decreases as ∼ð1þ qÞ−5, as well as for NS-NS binaries as
shown in Fig. 4 using NR results from Ref. [53]. The net
matter effects are ∼4 rad. The DT effect contributes ∼30%
of the AT phasing at the peak. Through comparisons with
NR BH-BH data [54] we verified that the phase error in the
PP model is negligible (∼10−4 rad). These results clearly
demonstrate the importance of including DT effects in
robust GW template models. Moreover, since for non-
spinning point masses the EOB model has been extensively
tested to assess the small size of its systematic errors
[55,56], our TEOB model also mitigates concerns [57–59]
about systematic errors in the tidal parameters due to lack
of high-order PN point-particle results.
Conclusions.—We developed the first full EOB wave-

form model that includes dynamical tidal effects. By
comparing to new and existing NR simulations, we
demonstrated the significance of DT effects in both
NS-BH and NS-NS inspirals, for mass ratios ≲3 and for
low NS compactnesses. For large BH spins, preliminary
estimates indicate that DT effects may remain non-negli-
gible for mass ratios ≲5, although the net matter effects
decrease rapidly with the mass ratio. We further devised an
effective description of DTs for use in GW measurement
templates. Our TEOB waveform model also describes the
GWs emitted from nonspinning NS-BH mergers and will
be implemented for LIGO data analysis. This work serves
as the foundation for physically more realistic cases and
improvements to the model.
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1.65|1.10 (bottom panels). Dashed lines refer to dephasings obtained from waveform models not incorporating

tidal e↵ects, while solid lines include tidal e↵ects (the color coding is the same as in Fig. 3). The hybrid waveforms and model
waveforms are aligned according to Eq. (12) in the time interval t 2 [�58 s,�40 s] before the merger, cf. gray shaded region.
The right panels show only the last 25 ms before merger, i.e., the last few gravitational wave cycles, and the real part of the
hybrid waveforms is shown in gray for a better visual interpretation.

A. Waveform alignment in the early inspiral

We consider the last 58 s before the merger. During
this time the NSs complete ⇠ 1400 orbits, where the
exact number depends on the configuration details. The
time-domain dephasing �� = �hybrid � �model is shown
on a logarithmic scale in the left panels of Fig. 6 and
on a linear scale focusing on the last few orbits in the
right panels. We align the waveforms in the time interval
t 2 [�58 s,�40 s], where t = 0 s marks the end of the
inspiral of the hybrid. The color coding of the waveform
approximants is identical to the previous figures. We will
now discuss each individual waveform separately.

Non-spinning, equal mass (SLy0.00|0.001.35|1.35): Over the
time interval considered, the NSs perform 1388 orbits,
i.e., the full signal contains 2775 GW cycles (a total of
17434 rad).

The phase di↵erences between all models and the hy-
brid waveform is below 30 rad; as shown in the right,
top panel of Fig. 6, most of the phase di↵erence is ac-
cumulated during the last ⇠ 15 GW cycles. For all
models considered the di↵erence between tidal and non-

tidal waveforms is small: . 1.5 full GW cycles. While
almost all waveform models incorporating tidal e↵ects
perform equally well, the TaylorF2Tides model has the
worst performance, while SEOBNRv4 ROM NRTidal and
TaylorT4Tides perform best.

Spinning, equal mass (H40.14|0.141.37|1.37): The overall phase
accumulated in the total time interval is about 17272 rad,
which corresponds to 1378 orbits, or a total of 2750 GW
cycles before the merger of the two stars. Due to the
larger e↵ective tidal coupling constant — T

e↵ = 189.2,

as opposed to T
e↵ = 73.5 for the SLy0.00|0.001.35|1.35 case —

we also find larger phase di↵erences between PhenomD,
SEOBNRv4 ROM and their NRTidal counterparts. How-
ever, the main phase di↵erence caused by matter ef-
fects comes from the spin induced quadrupole moment
which e↵ects the dynamics significantly earlier than
the tidal contributions modeled in PhenomD NRTidal
and SEOBNRv4 ROM NRTidal. Therefore, phase dif-
ferences of about 20 rad between PhenomPv2 and
PhenomPv2 NRTidal are obtained. Indeed the e↵ect of
the spin induced quadrupole contribution is already vis-
ible about 30 s before the merger, cf. left, middle panel.

Dietrich+ arXiv:1804.02235
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FIG. 4. Marginalized posteriors for the binary inclination
(✓JN) and luminosity distance (DL) using a uniform-in-volume
prior (blue) and EM-constrained luminosity distance prior
(purple) [104]. The dashed and solid contours enclose the
50% and 90% credible regions respectively. Both analyses
use a low-spin prior and make use of the known location of
SSS17a. 1-D marginal distributions have been renormalized
to have equal maxima to facilitate comparison, and the ver-
tical and horizontal lines mark 90% credible intervals.

gle ✓JN = 151+15

�11

deg (low-spin) and ✓JN = 153+15

�11

deg
(high spin). This measurement is consistent for both the
high-spin and low-spin cases, since the EM measurements
constrain the source of GW170817 to higher luminosity
distances and correspondingly more face-on inclination
values. They are also consistent with the limits reported
in previous studies using afterglow measurements [108]
and combined GW and EM constraints [104, 109, 110] to
infer the inclination of the binary.

B. Masses

Owing to its low mass, most of the SNR for GW170817
comes from the inspiral phase, while the merger and
post-merger phases happen at frequencies above 1 kHz,
where LIGO and Virgo are less sensitive (Fig. 1). This
is di↵erent than the BBH systems detected so far,
e.g. GW150914 [111–114] or GW170814 [52]. The inspiral
phase evolution of a compact binary coalescence can be
written as a PN expansion, a power series in v/c, where v
is the characteristic velocity within the system [87]. The
intrinsic parameters on which the system depends enter
the expansion at di↵erent PN orders. Generally speak-
ing, parameters which enter at lower orders have a large
impact on the phase evolution, and are thus easier to
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FIG. 5. 90% credible regions for component masses using
the four waveform models for the high-spin prior (top) and
low-spin prior (bottom). The true thickness of the contour,
determined by the uncertainty in the chirp mass, is too small
to show. The points mark the edge of the 90% credible re-
gions. 1-D marginal distributions have been renormalized to
have equal maxima, and the vertical and horizontal lines give
the 90% upper and lower limits on m1 and m2, respectively.

measure using the inspiral portion of the signal.

The chirp mass M enters the phase evolution at the
lowest order, thus we expect it to be the best-constrained
among the source parameters [32, 80, 92, 93]. The mass
ratio q, and consequently the component masses, are in-
stead harder to measure due to two main factors: 1)
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measure using the inspiral portion of the signal.

The chirp mass M enters the phase evolution at the
lowest order, thus we expect it to be the best-constrained
among the source parameters [32, 80, 92, 93]. The mass
ratio q, and consequently the component masses, are in-
stead harder to measure due to two main factors: 1)

high-spin prior, χ < 0.89

6

Low-spin prior (�  0.05) High-spin prior (�  0.89)

Binary inclination ✓JN 146+25
�27 deg 152+21

�27 deg

Binary inclination ✓JN using EM distance constraint [104] 151+15
�11 deg 153+15

�11 deg

Detector frame chirp mass Mdet 1.1975+0.0001
�0.0001M� 1.1976+0.0004

�0.0002M�

Chirp mass M 1.186+0.001
�0.001M� 1.186+0.001

�0.001M�

Primary mass m1 (1.36, 1.60) M� (1.36, 1.89) M�

Secondary mass m2 (1.16, 1.36) M� (1.00, 1.36) M�

Total mass m 2.73+0.04
�0.01M� 2.77+0.22

�0.05M�

Mass ratio q (0.73, 1.00) (0.53, 1.00)

E↵ective spin �e↵ 0.00+0.02
�0.01 0.02+0.08

�0.02

Primary dimensionless spin �1 (0.00, 0.04) (0.00, 0.50)

Secondary dimensionless spin �2 (0.00, 0.04) (0.00, 0.61)

Tidal deformability ⇤̃ with flat prior 300+500
�190(symmetric)/ 300+420

�230(HPD) (0, 630)

TABLE II. Properties for GW170817 inferred using the PhenomPNRT waveform model. All properties are source properties
except for the detector frame chirp mass Mdet = M(1 + z). Errors quoted as x

+z
�y represent the median, 5% lower limit, and

95% upper limit. Errors quoted as (x, y) are one-sided 90% lower or upper limits, and are used when one side is bounded by
a prior. For the masses, m1 is bounded from below and m2 is bounded from above by the equal mass line. The mass ratio
is bounded by q  1. For the tidal parameter ⇤̃, we quote results using a constant (flat) prior in ⇤̃. In the high-spin case we
quote a 90% upper limit for ⇤̃, while in the low-spin case we report both the symmetric 90% credible interval and the 90%
highest posterior density (HPD) interval, which is the smallest interval that contains 90% of the probability.

FIG. 3. The improved localization of GW170817, with the lo-
cation of the associated counterpart SSS17a/AT 2017gfo. The
darker and lighter green shaded regions correspond to 50%
and 90% credible regions respectively, and the gray dashed
line encloses the previously-derived 90% credible region pre-
sented in [3].

arise because under that prior our weak constraint on
precession (see Sec. III C) helps to rule out binary in-
clinations which are closer to edge-on and where preces-

sion e↵ects would be measurable, and hence increases the
lower bound on the luminosity distance. Meanwhile, the
upper bound on the luminosity distance is achieved with
face-o↵ binary inclinations, and is nearly the same for
both high-spin and low-spin cases.

This same weak constraint on precession leads to a
tighter constraint on the inclination angle in the high-
spin case when using the precessing signal model Phe-
nomPNRT, ✓JN = 152+21

�27

deg, as compared to the low-
spin case. The inclination measurement in the low-spin
case, ✓JN = 146+25

�27

deg, agrees with the inferred values
for both the high- and low-spin cases of our three wave-
form models that treat only aligned-spins (see Table IV
in Appendix A). This gives further evidence that it is the
absence of strong precession e↵ects in the signal, which
can only occur in the high-spin case of the precessing
model, that leads to tighter constraints on ✓JN . This
tighter constraint is absent for systems restricted to the
lower spins expected from Galactic NS binaries.

Conversely, EM measurements of the distance to the
host galaxy can be used to reduce the e↵ect of this degen-
eracy, improving constraints on the luminosity distance
of the binary and its inclination, which may be useful for
constraining emission mechanisms. Figure 4 compares
our posterior estimates for distance and inclination with
no a priori assumptions regarding the distance to the
binary (i.e., using a uniform-in-volume prior) to the im-
proved constraints from an EM-informed prior for the
distance to the binary. For the EM-informed results we
have reweighted the posterior distribution to use a prior
in distance following a normal distribution with mean
40.7 Mpc and standard deviation 2.36 Mpc [104]. This
leads to improved measurements of the inclination an-

m1 2
m2 2
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Low-spin prior (�  0.05) High-spin prior (�  0.89)

Binary inclination ✓JN 146+25
�27 deg 152+21

�27 deg

Binary inclination ✓JN using EM distance constraint [104] 151+15
�11 deg 153+15

�11 deg

Detector frame chirp mass Mdet 1.1975+0.0001
�0.0001M� 1.1976+0.0004

�0.0002M�

Chirp mass M 1.186+0.001
�0.001M� 1.186+0.001

�0.001M�

Primary mass m1 (1.36, 1.60) M� (1.36, 1.89) M�

Secondary mass m2 (1.16, 1.36) M� (1.00, 1.36) M�

Total mass m 2.73+0.04
�0.01M� 2.77+0.22

�0.05M�

Mass ratio q (0.73, 1.00) (0.53, 1.00)

E↵ective spin �e↵ 0.00+0.02
�0.01 0.02+0.08

�0.02

Primary dimensionless spin �1 (0.00, 0.04) (0.00, 0.50)

Secondary dimensionless spin �2 (0.00, 0.04) (0.00, 0.61)

Tidal deformability ⇤̃ with flat prior 300+500
�190(symmetric)/ 300+420

�230(HPD) (0, 630)

TABLE II. Properties for GW170817 inferred using the PhenomPNRT waveform model. All properties are source properties
except for the detector frame chirp mass Mdet = M(1 + z). Errors quoted as x

+z
�y represent the median, 5% lower limit, and

95% upper limit. Errors quoted as (x, y) are one-sided 90% lower or upper limits, and are used when one side is bounded by
a prior. For the masses, m1 is bounded from below and m2 is bounded from above by the equal mass line. The mass ratio
is bounded by q  1. For the tidal parameter ⇤̃, we quote results using a constant (flat) prior in ⇤̃. In the high-spin case we
quote a 90% upper limit for ⇤̃, while in the low-spin case we report both the symmetric 90% credible interval and the 90%
highest posterior density (HPD) interval, which is the smallest interval that contains 90% of the probability.

FIG. 3. The improved localization of GW170817, with the lo-
cation of the associated counterpart SSS17a/AT 2017gfo. The
darker and lighter green shaded regions correspond to 50%
and 90% credible regions respectively, and the gray dashed
line encloses the previously-derived 90% credible region pre-
sented in [3].

arise because under that prior our weak constraint on
precession (see Sec. III C) helps to rule out binary in-
clinations which are closer to edge-on and where preces-

sion e↵ects would be measurable, and hence increases the
lower bound on the luminosity distance. Meanwhile, the
upper bound on the luminosity distance is achieved with
face-o↵ binary inclinations, and is nearly the same for
both high-spin and low-spin cases.

This same weak constraint on precession leads to a
tighter constraint on the inclination angle in the high-
spin case when using the precessing signal model Phe-
nomPNRT, ✓JN = 152+21

�27

deg, as compared to the low-
spin case. The inclination measurement in the low-spin
case, ✓JN = 146+25

�27

deg, agrees with the inferred values
for both the high- and low-spin cases of our three wave-
form models that treat only aligned-spins (see Table IV
in Appendix A). This gives further evidence that it is the
absence of strong precession e↵ects in the signal, which
can only occur in the high-spin case of the precessing
model, that leads to tighter constraints on ✓JN . This
tighter constraint is absent for systems restricted to the
lower spins expected from Galactic NS binaries.

Conversely, EM measurements of the distance to the
host galaxy can be used to reduce the e↵ect of this degen-
eracy, improving constraints on the luminosity distance
of the binary and its inclination, which may be useful for
constraining emission mechanisms. Figure 4 compares
our posterior estimates for distance and inclination with
no a priori assumptions regarding the distance to the
binary (i.e., using a uniform-in-volume prior) to the im-
proved constraints from an EM-informed prior for the
distance to the binary. For the EM-informed results we
have reweighted the posterior distribution to use a prior
in distance following a normal distribution with mean
40.7 Mpc and standard deviation 2.36 Mpc [104]. This
leads to improved measurements of the inclination an-

m1 2
m2 2
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low-spin prior, χ < 0.05
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U N I V E R S A L  R E L A T I O N S  A N D  
PA R A M E T R I Z E D  E O S  

a possible approach (not pursued in the current papers) 

use model selection to determine which EOS is favored by data 

this will be time consuming and compute intensive 

use EOS-insensitive, universal relations to measure posterior 
distribution of tidal deformability 

infer posterior distribution of radius of each neutron star  using 
universal relations 

directly sample the EOS using parametrized relations 

similar to the first choice above but far less compute intensive

34

Universal Relations: Yagi+Yunes 2013, 2015, 2016, 2017; Chatziioannou 2018; 
Parameterized Relations: Lindblom 2010, 2018; Lackey+Wade 2015; Carney+ 2018
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FIG. 9. Inferred spin parameters using the PhenomPNRT
model as in Fig. 8, but in the low-spin case where the dimen-
sionless component spin magnitudes � < 0.05. The posterior
probability densities for the dimensionless spin components
and for �p are plotted at the reference gravitational wave fre-
quency of f = 100 Hz.

by the small uncertainty in chirp mass. The lengths of
these bands are determined by the uncertainty in mass
ratio. They have most of their support near the ⇤

1

= ⇤
2

line corresponding to the equal mass case, and end at the
90% lower limit for the mass ratio. The predicted values
of the tidal parameters for the EOSs MS1, MS1b, and H4
lie well outside of the 90% credible region for both the
low-spin and high-spin priors, and for all waveform mod-
els. This can be compared to Fig. 5 of [3] where H4 was
still marginally consistent with the 90% credible region.

The leading tidal contribution to the GW phase evo-
lution is a mass-weighted linear combination of the two
tidal parameters ⇤̃ [135]. It first appears at 5PN order
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FIG. 10. PDFs for the tidal deformability parameters ⇤1 and
⇤2 using the high-spin (top) and low-spin (bottom) priors.
The blue shading is the PDF for the precessing waveform
PhenomPNRT. The 50% (dashed) and 90% (solid) credible
regions are shown for the four waveform models. The seven
black curves are the tidal parameters for the seven represen-
tative EOS models using the masses estimated with the Phe-
nomPNRT model, ending at the ⇤1 = ⇤2 boundary.
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directly in an EOS parameter space. We sample uni-
formly in all EOS parameters within the following ranges:
�0 2 [0.2, 2], �1 2 [�1.6, 1.7], �2 2 [�0.6, 0.6], and
�3 2 [�0.02, 0.02] and additionally impose that the adi-
abatic index �(p) 2 [0.6, 4.5]. This choice of prior
ranges for the EOS parameters was chosen such that our
parametrization encompasses a wide range of candidate
EOSs [110]. Then for each sample, the four EOS pa-
rameters and the masses are mapped to a (⇤1,⇤2) pair
through the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions describing the equilibrium configuration of a spher-
ical star [119]. The two tidal deformabilities are then used
to compute the waveform template.

Sampling directly in the EOS parameter space allows for
certain prior constraints to be conveniently incorporated in
the analysis. In our analysis, we impose the following cri-
teria on all EOS and mass samples: (i) causality, the speed
of sound in the NS must be less than the speed of light (plus
10% to allow for imperfect parameterization) up to the cen-
tral pressure of the heaviest star supported by the EOS; (ii)
internal consistency, the EOS must support the proposed
masses of each component; and (iii) observational consis-
tency, the EOS must have a maximum mass at least as high
as previously observed NS masses, specifically 1.97M�.
Another condition the EOS must obey is that of thermody-
namic stability; the EOS must be monotonically increasing
(d✏/dp > 0). This condition is built into the parametriza-
tion [110], so we do not need to explicitly impose it.

RESULTS

We begin by demonstrating the improvement in the mea-
surement of the tidal deformability parameters due to im-
posing a common but unknown EOS for the two NSs. In
Fig. 1 we show the marginalized joint posterior PDF for
the individual tidal deformabilities. We show results from
our analysis using the ⇤a(⇤s, q) relation in green and the
parametrized EOS without a maximum mass constraint in
blue. These are compared to results from [52], where the
two tidal deformability parameters are sampled indepen-
dently, in orange. The shaded region marks the ⇤2 < ⇤1

region that is naturally excluded when a common realis-
tic EOS is assumed, but is not excluded from the analysis
of [52]. In both cases imposing a common EOS leads to
a smaller uncertainty in the tidal deformability measure-
ment. The area of the 90% credible region for the ⇤1–⇤2

posterior shrinks by a factor of ⇠ 3, which is consistent
with the results of [106] for soft EOSs and NSs with simi-
lar masses. The tidal deformability of a 1.4M� NS can be
estimated through a linear expansion of ⇤(m)m5 around
1.4M� as in [5, 48, 120] to be ⇤1.4 = 190+390

�120 at the 90%
level when a common EOS is imposed (here and through-
out this paper we quote symmetric credible intervals). Our
results suggest that “soft” EOSs such as APR4, which pre-
dict smaller values of the tidal deformability parameter, are

favored over “stiff” EOSs such as H4 or MS1, which pre-
dict larger values of the tidal deformability parameter and
lie outside the 90% credible region.
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FIG. 1. Marginalized posterior for the tidal deformabilities of the
two binary components of GW170817. The green shading shows
the posterior obtained using the ⇤a(⇤s, q) EOS-insensitive re-
lation to impose a common EOS for the two bodies, while the
green, blue, and orange lines denote 50% (dashed) and 90%
(solid) credible levels for the posteriors obtained using EOS-
insensitive relations, a parameterized EOS without a maximum
mass requirement, and independent EOSs (taken from [52]), re-
spectively. The grey shading corresponds to the unphysical re-
gion ⇤2 < ⇤1 while the seven black scatter regions give the
tidal parameters predicted by characteristic EOS models for this
event [113, 115, 121–125].

We next explore what inferences we can make about the
structure of NSs. We do this using the spectral EOS pa-
rameterization described above in combination with the re-
quirement that the EOS must support NSs up to at least
1.97M�, a conservative estimate based on the heaviest
known pulsar [65]. From this we obtain a posterior for
the NS interior pressure as a function of rest-mass density.
The result is shown in Fig. 2, along with predictions of
the pressure-density relationship from various EOS mod-
els. The pressure posterior is shifted from the 90% credible
prior region (marked by the orange lines) and towards the
soft floor of the parameterized family of EOS. This means
that the posterior is indicating more support for softer EOS
than the prior. The vertical lines denote the nuclear satu-
ration density and two more density values that are known
to approximately correlate with bulk macroscopic proper-
ties of NSs [19]. The pressure at twice (six times) the nu-
clear saturation density is measured to be 3.5+2.7

�1.7 ⇥ 1034

(9.0+7.9
�2.6 ⇥ 1035) dyn/cm2 at the 90% level.

The pressure posterior appears to show minor signs of a
bend above a density of ⇠ 5⇢nuc. Evidence of such behav-

90% CI
EOS insensitive 
parametrized EOS 
independent EOSs

50% CI
EOS insensitive 
parametrized EOS 
independent EOSs Λ2 < Λ1
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D E F O R M A B I L I T Y  C O N S T R A I N T S

• under minimal assumptions about the nature of 
companions:   

• 0 < Λ1.4< 630 (large spin priors) or 70 < Λ1.4 < 720 (low 
spins) 

• assuming that GW170817 contained two neutron stars 
and have low spins: 

• 70 < Λ1.4 < 580

37Abbott+, arXiv 1805.11581 
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FIG. 3. Marginalized posterior for the mass m and areal radius R of each binary component using EOS-insensitive relations (left panel)
and a parametrized EOS where we impose a lower limit on the maximum mass of 1.97M� (right panel). The top blue (bottom orange)
posterior corresponds to the heavier (lighter) NS. Example mass-radius curves for selected EOSs are overplotted in grey. The lines in
the top left denote the Schwarzschild BH (R = 2m) and Buchdahl (R = 9m/4) limits. In the one-dimensional plots, solid lines are
used for the posteriors, while dashed lines are used for the corresponding parameter priors. Dotted vertical lines are used for the bounds
of the 90% credible intervals.

ence [63] arrives at a similar conclusion using our ⇤̃ < 800
constraint [5] (though see [52] for an amended ⇤̃ bound)
and the observation that ⇤̃ is almost insensitive to the bi-
nary mass ratio [99]. Our improved estimate of ⇤1.4 =
190+390

�120, and R1 = 10.8+2.0
�1.7 km and R2 = 10.7+2.1

�1.5 km
for the EOS-insensitive-relation analysis is roughly consis-
tent with these estimates (see for example Fig. 1 of [62]
and [58]). If we additionally enforce the heaviest ob-
served pulsar to be supported by placing direct constraints
on the EOS parameter space, we get further improvement
in the radius measurement, with R1 = 11.9+1.4

�1.4 km and
R2 = 11.9+1.4

�1.4 km.

A recent analysis of the GW170817 data was performed
in De et al. [53] using the TaylorF2 model, imposing that
the two NSs have the same radii which, under the addi-
tional assumption that ⇤ / C�6 (an alternative to the ⇤–
C relation used here [104]), directly relates the two tidal
deformabilities as ⇤1 = q6⇤2. De et al. constrain the
common NS radius to a 90% credible interval 8.7 km <
R̂ < 14.1 km, corresponding to a width of 5.4 km, which
is wider than the uncertainties on radii presented in this pa-
per by a factor of about two. There are differences in sev-
eral details of the set-up of the two analyses (most notably,
frequency range, data calibration, the noise PSD estima-
tion, waveform model, parameter priors, assumed relations
between radii and ⇤s and treatment of corresponding un-
certainties), each of which may be responsible for part of

the observed discrepancies. The analysis of De et al. re-
produces the initial tidal deformability results of Abbott
et al. [5], but improvements detailed in [52] and used in this
work improved our tidal constraints by ⇠ 10-20%. Here,
in contrast to De et al, we found that enforcing a common
EOS additionally restricts the recovered tidal parameters,
as shown in Fig 1. We note, however, that while our re-
sulting posteriors for the two NS radii are similar to each
other, a fraction of the posterior samples gives pairs with
significantly different NS radii, up to |R1 � R2| ⇠ 2 km.
Therefore, the De et al. analysis makes considerably dif-
ferent assumptions when enforcing a common EOS than
us.

Our results, and specifically the lower radius limit,
do not constitute observational proof of tidal effects in
GW170817, as our analysis has explicitly assumed that the
coalescing bodies were NSs both in terms of their spins
and tidal deformabilities. In particular, the spins are re-
stricted to small values typical for galactic NSs in binaries,
and the tidal deformabilites are calculated consistently as-
suming a common typical NS EoS. Moreover, the ⇤–C
map diverges as ⇤ approaches zero (BH), and therefore
the lower bounds obtained for the radii do not imply lower
bounds on the tidal deformabilities. Meanwhile, the analy-
sis of [52] assumes independent tidal parameters and finds
a lower bound on ⇤̃ only under the small-spin assumption
but not if spins larger than 0.05 are allowed.

The detection of GW170817 has opened new avenues in

EOS insensitive
parameterized EOS and  
assume NS mass of at 
least ~ 2 solar mass
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G W 1 7 0 8 1 7 :   
R A D I U S  C O N S T R A I N T S

• constraints on NS radius based on: 

• EOS insensitive analysis: 9.1 km < R1 < 12.8 km, 9.2 km 
< R2 < 12.8 km 

• Parametrized EOS and EOS consistent with heaviest 
observed NS:   10.5 km < R1,2 < 13.3 km   

• not imposing heaviest NS constraint gives results 
similar to EOS insensitive analysis 

• softer EoS (e.g. APR4) are preferred over stiffer EoS (e.g. 
MS1 or H4)

39Abbott+, arXiv 1805.11581 
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ior at high densities would be an indication of extra degrees
of freedom, though this is not an outcome of the GW data
alone. Indeed the horizontal lines denote the 90% intervals
for the central pressure of the two stars, suggesting that
our data are not informative for pressures above that. The
bend is an outcome of two competing effects: the GW data
point toward a lower pressure, while the requirement that
the EOS supports masses above 1.97M� demands a high
pressure at large densities. The result is a precise pres-
sure estimate at around 5⇢nuc and a broadening above that,
giving the impression of a bend in the pressure. We have
verified that the bend is absent if we remove the maximum
mass constraint from our analysis.
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FIG. 2. Marginalized posterior (blue) and prior (orange) for the
pressure p as a function of the rest-mass density ⇢ of the NS
interior using the spectral EOS parametrization and imposing a
lower limit on the maximum NS mass supported by the EOS
of 1.97M�. The dark (light) blue shaded region corresponds
to the 50% (90%) posterior credible level and the orange lines
show the 90% prior credible interval. Horizontal lines denote
the 90% credible interval for the central pressure of the heav-
ier (dashed) and the lighter (dotted) binary components. Verti-
cal lines correspond to once, twice, and six times the nuclear
saturation density. Overplotted in grey are representative EOS
models [121, 122, 124], using data taken from [19]; from top to
bottom at 2⇢nuc we show H4, APR4, and WFF1.

Finally we place constraints in the 2-dimensional param-
eter space of the NS mass and areal radius for each binary
component. This posterior is shown in Fig. 3. The left
panel is obtained by first using the ⇤a(⇤s, q) relation to ob-
tain tidal deformability samples assuming a common EOS
and then using the ⇤–C relation to compute the NS radii.
The right panel is computed by integrating the TOV equa-
tion to compute the radius for each sample in the spectral
EOS parametrization after imposing a maximum mass of at
least 1.97M�. At the 90% level, the radii of the two NSs
are R1 = 10.8+2.0

�1.7 km and R2 = 10.7+2.1
�1.5 km from the

left panel and R1 = 11.9+1.4
�1.4 km and R2 = 11.9+1.4

�1.4 km

from the right panel.
The difference between the two radii estimates is mainly

due to different physical information included in each anal-
ysis. The EOS-insensitive-relations analysis (left panel)
is based on GW data alone, while the parametrized-EOS
analysis (right panel) imposes an additional observational
constraint, namely that the EOS must support NSs of at
least 1.97M�. This has a large effect on the radii priors as
shown in the 1-dimensional plots of Fig. 3, since small radii
are typically predicted by soft EOSs, which cannot support
large NS masses. In the case of EOS-insensitive relations
(left panel), the prior allows for smaller values of the radius
than in the parametrized-EOS case (right panel), something
that is reflected in the posteriors since the GW data alone
cannot rule out radii below ⇠ 10 km. Therefore the lower
radius limit in the EOS-insensitive-relations analysis is de-
termined by the GW measurement, while in the case of the
parametrized-EOS analysis it is determined by the mass of
the heaviest observed pulsar and its implications for NS
radii [65]. Additionally, we verified that the parametrized-
EOS analysis without the maximum mass constraint leads
to similar results to the EOS-insensitive-relations analysis.

To quantify the improvement from assuming that both
NSs obey the same EOS, we apply the ⇤–C relation to
tidal deformability samples calculated without assuming
the ⇤a(⇤s, q) relation (the orange posterior of Fig. 1) and
obtain R1 = 11.8+2.7

�3.3 km and R2 = 10.8+2.9
�3.0 km at the

90% level. This suggests that imposing a common EOS
for the two binary components leads to a reduction of the
90% credible interval width for the radius measurement of
almost a factor of two from 5.9 km to 3.6 km.

DISCUSSION

In this letter, we complement our analysis of the tidal
effects of GW170817 in [52] with a targeted analysis that
assumes astrophysically plausible NS spins and tidal pa-
rameters, as well as the same EOS for both NSs. This
additional prior information enables us to measure NS
radii with an uncertainty less than 2.8 km if consistency
with observed pulsar masses is enforced, and 3.6 km us-
ing GW data alone at the 90% credible level. Simultane-
ously, the pressure at twice the nuclear saturation density
is measured to be p(2⇢nuc) = 3.5+2.7

�1.7 ⇥ 1034 dyn/cm2.
Our results are consistent with X-ray binary observations
(e.g. [19, 20, 126, 127]) and suggest that NS radii are
not large. Additionally, our results can be compared to
tidal inference based on the electromagnetic emission of
GW170817 [128, 129].

Our results are comparable and consistent with studies
that use the tidal measurement from [5] to obtain bounds
on NS radii. Using our bound of ⇤1.4 < 800 (the only
tidal parameter in [5], which assumed a common EOS
for both NSs) and different EOS parametrizations, several
studies found R1.4

<⇠ 13.5 km [56, 58, 62, 64]. Refer-

EOS should support a 
NS mass of at least 
1.97 solar mass  

orange: 90% prior 
dark (light) blue 
shaded: 50% (90%) 
posterior 
grey: H4, APR4, WFF1
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Fig. 2 The planned sensitivity evolution and observing runs of the aLIGO, AdV and KAGRA detectors
over the coming years. The colored bars show the observing runs, with the expected sensitivities given
by the data in Fig. 1 for future runs, and the achieved sensitivities in O1 and in O2. There is significant
uncertainty in the start and end times of planned the observing runs, especially for those further in the future,
and these could move forward or backwards relative to what is shown above. The plan is summarised in
Sect. 2.2

2016–2017 (O2) A nine-month run with H1L1, joined by V1 for the final month.
O2 began on 30 November 2016, with AdV joining 1 August 2017 and ended
on 25 August 2017. The expected aLIGO range was 80–120 Mpc, and the
achieved range was in the region of 60–100 Mpc; the expected AdV range was
20–65 Mpc, and the initial range was 25–30 Mpc.

2018–2019 (O3) A year-long run with H1L1 at 120–170 Mpc and with V1 at
65–85 Mpc beginning about a year after the end of O2.

2020+ Three-detector network with H1L1 at full sensitivity of 190 Mpc and V1
at 65–115 Mpc, later increasing to design sensitivity of 125 Mpc.

2024+ H1L1V1K1I1 network at full sensitivity (aLIGO at 190 Mpc, AdV at
125 Mpc and KAGRA at 140 Mpc). Including more detectors improves sky
localization (Klimenko et al. 2011; Veitch et al. 2012; Nissanke et al. 2013;
Rodriguez et al. 2014; Pankow et al. 2018) as well as the fraction of coincident
observational time. 2024 is the earliest time we imagine LIGO-India could be
operational.

This timeline is summarized in Fig. 2; we do not include observing runs with LIGO-
India yet, as these are still to be decided. Additionally, GEO 600 will continue
observing, with frequent commissioning breaks, during this period. The observational
implications of these scenarios are discussed in Sect. 4.

123
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P R O S P E C T S

• third observing run (O3) from early 2019 
• aLIGO range: 120-170 Mpc, Virgo range: 65-85 Mpc 

• design sensitivity by 2020+ 
• advanced LIGO range: 190 Mpc, Virgo range: 125 Mpc 

• binary neutron star rate inferred from GW170817 
• volumetric rage: [300, 5000] mergers yr-1 Mpc-3 

• implied detection rate in O3: 1-50 per year and at 
design: 

42Abbott+, Living Rev Relativ (2018) 21:3 
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N U M E R I C A L  R E L AT I V I T Y  
S I M U L AT I O N S

• what physical effects are still lacking? 
• neutrino transport, magnetic fields, hyperons/quark-gluon 

plasma 
• how do simulations from different groups compare? 
• how well do simulations cover the parameter space? 

• component masses, mass ratio, spins,  
• simulations of neutron star-black hole mergers 

• parameter space coverage (as above) 
• up to what mass ratios are matter effects relevant 

• for GW modeling, for EM observation 
• simulations of ~1:1 neutron star-black hole mergers
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A N A LY T I C A L  M O D E L I N G
• are waveform models good enough for unbiased estimation of 

NS EoS? 
• waveform models based on independent NR simulations 
• comparison of analytical models across the parameter space 

• physics that is lacking in modeling 
• spins, magnetic fields, equations of state 

• post-merger models 
• spectra, time-domain models 

• inspiral-post merger unified models 
• what, if anything, do we gain by IPM models?
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A N A LY S I S  M E T H O D S
• are our analysis methods mature? 

• what further improvements are needed in inference 
techniques? 

• prior probability distribution of parameters 
• what priors are appropriate for: masses, spins, and magnetic 

fields 
• can we continue to assume the same EoS for both companions? 

• phase transition, distinguishing NS-BH vs NS-NS  
• does EoS parametrization work for all SNRs and for EoS?  

• do we need to work with specific EoS for very loud signals or 
when combining a large number of events?
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Figure 2. Timeline of the discovery of GW170817, GRB 170817A, SSS17a/AT 2017gfo, and the follow-up observations are shown by messenger and wavelength
relative to the time tc of the gravitational-wave event. Two types of information are shown for each band/messenger. First, the shaded dashes represent the times when
information was reported in a GCN Circular. The names of the relevant instruments, facilities, or observing teams are collected at the beginning of the row. Second,
representative observations (see Table 1) in each band are shown as solid circles with their areas approximately scaled by brightness; the solid lines indicate when the
source was detectable by at least one telescope. Magnification insets give a picture of the first detections in the gravitational-wave, gamma-ray, optical, X-ray, and
radio bands. They are respectively illustrated by the combined spectrogram of the signals received by LIGO-Hanford and LIGO-Livingston (see Section 2.1), the
Fermi-GBM and INTEGRAL/SPI-ACS lightcurves matched in time resolution and phase (see Section 2.2), 1 5×1 5 postage stamps extracted from the initial six
observations of SSS17a/AT 2017gfo and four early spectra taken with the SALT (at tc+1.2 days; Buckley et al. 2017; McCully et al. 2017b), ESO-NTT (at
tc+1.4 days; Smartt et al. 2017), the SOAR 4 m telescope (at tc+1.4 days; Nicholl et al. 2017d), and ESO-VLT-XShooter (at tc+2.4 days; Smartt et al. 2017) as
described in Section 2.3, and the first X-ray and radio detections of the same source by Chandra (see Section 3.3) and JVLA (see Section 3.4). In order to show
representative spectral energy distributions, each spectrum is normalized to its maximum and shifted arbitrarily along the linear y-axis (no absolute scale). The high
background in the SALT spectrum below 4500Å prevents the identification of spectral features in this band (for details McCully et al. 2017b).
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In the mid-1960s, gamma-ray bursts (GRBs) were discovered
by the Vela satellites, and their cosmic origin was first established
by Klebesadel et al. (1973). GRBs are classified as long or short,
based on their duration and spectral hardness(Dezalay et al. 1992;
Kouveliotou et al. 1993). Uncovering the progenitors of GRBs
has been one of the key challenges in high-energy astrophysics
ever since(Lee & Ramirez-Ruiz 2007). It has long been
suggested that short GRBs might be related to neutron star
mergers (Goodman 1986; Paczynski 1986; Eichler et al. 1989;
Narayan et al. 1992).

In 2005, the field of short gamma-ray burst (sGRB) studies
experienced a breakthrough (for reviews see Nakar 2007; Berger
2014) with the identification of the first host galaxies of sGRBs
and multi-wavelength observation (from X-ray to optical and
radio) of their afterglows (Berger et al. 2005; Fox et al. 2005;
Gehrels et al. 2005; Hjorth et al. 2005b; Villasenor et al. 2005).
These observations provided strong hints that sGRBs might be
associated with mergers of neutron stars with other neutron stars
or with black holes. These hints included: (i) their association with
both elliptical and star-forming galaxies (Barthelmy et al. 2005;
Prochaska et al. 2006; Berger et al. 2007; Ofek et al. 2007; Troja
et al. 2008; D’Avanzo et al. 2009; Fong et al. 2013), due to a very
wide range of delay times, as predicted theoretically(Bagot et al.
1998; Fryer et al. 1999; Belczynski et al. 2002); (ii) a broad
distribution of spatial offsets from host-galaxy centers(Berger
2010; Fong & Berger 2013; Tunnicliffe et al. 2014), which was
predicted to arise from supernova kicks(Narayan et al. 1992;
Bloom et al. 1999); and (iii) the absence of associated
supernovae(Fox et al. 2005; Hjorth et al. 2005c, 2005a;
Soderberg et al. 2006; Kocevski et al. 2010; Berger et al.
2013a). Despite these strong hints, proof that sGRBs were
powered by neutron star mergers remained elusive, and interest
intensified in following up gravitational-wave detections electro-
magnetically(Metzger & Berger 2012; Nissanke et al. 2013).

Evidence of beaming in some sGRBs was initially found by
Soderberg et al. (2006) and Burrows et al. (2006) and confirmed

by subsequent sGRB discoveries (see the compilation and
analysis by Fong et al. 2015 and also Troja et al. 2016). Neutron
star binary mergers are also expected, however, to produce
isotropic electromagnetic signals, which include (i) early optical
and infrared emission, a so-called kilonova/macronova (hereafter
kilonova; Li & Paczyński 1998; Kulkarni 2005; Rosswog 2005;
Metzger et al. 2010; Roberts et al. 2011; Barnes & Kasen 2013;
Kasen et al. 2013; Tanaka & Hotokezaka 2013; Grossman et al.
2014; Barnes et al. 2016; Tanaka 2016; Metzger 2017) due to
radioactive decay of rapid neutron-capture process (r-process)
nuclei(Lattimer & Schramm 1974, 1976) synthesized in
dynamical and accretion-disk-wind ejecta during the merger;
and (ii) delayed radio emission from the interaction of the merger
ejecta with the ambient medium (Nakar & Piran 2011; Piran et al.
2013; Hotokezaka & Piran 2015; Hotokezaka et al. 2016). The
late-time infrared excess associated with GRB 130603B was
interpreted as the signature of r-process nucleosynthesis (Berger
et al. 2013b; Tanvir et al. 2013), and more candidates were
identified later (for a compilation see Jin et al. 2016).
Here, we report on the global effort958 that led to the first joint

detection of gravitational and electromagnetic radiation from a
single source. An ∼ 100 s long gravitational-wave signal
(GW170817) was followed by an sGRB (GRB 170817A) and
an optical transient (SSS17a/AT 2017gfo) found in the host
galaxy NGC 4993. The source was detected across the
electromagnetic spectrum—in the X-ray, ultraviolet, optical,
infrared, and radio bands—over hours, days, and weeks. These
observations support the hypothesis that GW170817 was
produced by the merger of two neutron stars in NGC4993,
followed by an sGRB and a kilonova powered by the radioactive
decay of r-process nuclei synthesized in the ejecta.

Figure 1. Localization of the gravitational-wave, gamma-ray, and optical signals. The left panel shows an orthographic projection of the 90% credible regions from
LIGO (190 deg2; light green), the initial LIGO-Virgo localization (31 deg2; dark green), IPN triangulation from the time delay between Fermi and INTEGRAL (light
blue), and Fermi-GBM (dark blue). The inset shows the location of the apparent host galaxy NGC 4993 in the Swope optical discovery image at 10.9 hr after the
merger (top right) and the DLT40 pre-discovery image from 20.5 days prior to merger (bottom right). The reticle marks the position of the transient in both images.

958 A follow-up program established during initial LIGO-Virgo observations
(Abadie et al. 2012) was greatly expanded in preparation for Advanced LIGO-
Virgo observations. Partners have followed up binary black hole detections,
starting with GW150914 (Abbott et al. 2016a), but have discovered no firm
electromagnetic counterparts to those events.
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Figure 2. Timeline of the discovery of GW170817, GRB 170817A, SSS17a/AT 2017gfo, and the follow-up observations are shown by messenger and wavelength
relative to the time tc of the gravitational-wave event. Two types of information are shown for each band/messenger. First, the shaded dashes represent the times when
information was reported in a GCN Circular. The names of the relevant instruments, facilities, or observing teams are collected at the beginning of the row. Second,
representative observations (see Table 1) in each band are shown as solid circles with their areas approximately scaled by brightness; the solid lines indicate when the
source was detectable by at least one telescope. Magnification insets give a picture of the first detections in the gravitational-wave, gamma-ray, optical, X-ray, and
radio bands. They are respectively illustrated by the combined spectrogram of the signals received by LIGO-Hanford and LIGO-Livingston (see Section 2.1), the
Fermi-GBM and INTEGRAL/SPI-ACS lightcurves matched in time resolution and phase (see Section 2.2), 1 5×1 5 postage stamps extracted from the initial six
observations of SSS17a/AT 2017gfo and four early spectra taken with the SALT (at tc+1.2 days; Buckley et al. 2017; McCully et al. 2017b), ESO-NTT (at
tc+1.4 days; Smartt et al. 2017), the SOAR 4 m telescope (at tc+1.4 days; Nicholl et al. 2017d), and ESO-VLT-XShooter (at tc+2.4 days; Smartt et al. 2017) as
described in Section 2.3, and the first X-ray and radio detections of the same source by Chandra (see Section 3.3) and JVLA (see Section 3.4). In order to show
representative spectral energy distributions, each spectrum is normalized to its maximum and shifted arbitrarily along the linear y-axis (no absolute scale). The high
background in the SALT spectrum below 4500Å prevents the identification of spectral features in this band (for details McCully et al. 2017b).
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described in Section 2.3, and the first X-ray and radio detections of the same source by Chandra (see Section 3.3) and JVLA (see Section 3.4). In order to show
representative spectral energy distributions, each spectrum is normalized to its maximum and shifted arbitrarily along the linear y-axis (no absolute scale). The high
background in the SALT spectrum below 4500Å prevents the identification of spectral features in this band (for details McCully et al. 2017b).
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H O W  D I F F E R E N T  A R E  T H E  
S P E C T R A  F O R  D I F F E R E N T  E O S ?

• 1.35 - 1.35 solar mass neutron stars  

• (same mass BBH for comparison) 

• Effective distance 100 Mpc: optimally oriented 

• EOS 2H: Large-radius stars (>15 km) - hard EOS 

• EOS HB: Moderate-radius stars (~11.6km) - soft EOS 

• Results based on Read et al  Phys. Rev. D 88, 044042 
(arXiv:1306.4065)
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