What this talk won't give you

Equation of state of dense nuclear matter in MeV

So...why care?

We suggest:

Not just hadronic matter vs dense quarks

Also: intermediate region, "quarkyonic"

Spatially inhomogenous phases may dominate for *all* relevant densities

But at "high" temperature these are *dominated* by fluctuations

A pseudo-Lifshitz point in QCD

- RDP, VV Skokov & A Tsvelik, 1801.08156
- Fluctuations and chiral spirals in QCD
- 1. Standard phase diagram in T & μ: critical end-point (CEP) *Not* seen in lattice
- 2. Quarkyonic phase at large N_c and $N_c = 2$ (lattice)
- 3. Chiral Spirals in Quarkyonic matter: sigma models, SU(N) and U(1)
- 4. Phase diagram: pion/kaon condensates & Chiral Spirals

just a 1st order line, with large fluctuations near a pseudo-Lifshitz point

Phase diagram for QCD in T & μ : CEP?

Lattice: at $\mu = 0$, $T_{ch} \sim 154 \pm 9$ MeV, crossover Quarks drive a 4-pt scalar coupling negative, could turn into 1st order

Asakawa & Yazaki '89, Stephanov, Rajagopal & Shuryak '98 & '99 Must do so at a Critical End Point (CEP), true 2nd order phase transition

Hot QCD: no CEP nearby

Lattice: Hot QCD, 1701.04325

Expand about $\mu = 0$, power series in μ^{2n} , n = 1, 2, 3.

Estimate radius of convergence. *No* sign of CEP by $\mu_{qk} \sim T$

Cluster expansion: no CEP nearby

Lattice: Vovchenko, Steinheimer, Philipsen & Stoecker, 1701.04325 Use cluster expansion method, different way of estimating power series in μ No sign of CEP by $\mu_{qk} \sim T$

Lattice for T = 0, $\mu \neq 0$, *two* colors

Lattice: Bornyakov et al, 1711.01869. No sign problem for $N_c = 2$. Two flavors. Heavy pions, $m_{\pi} \sim 740$ MeV. $\sqrt{\sigma} = 470$ MeV. 32^4 lattice, a ~ .04 fm Physics differs (Bose-Einstein condensation of baryons). *Bare* Polyakov loop:

Lattice for T = 0, $\mu \neq 0$, *two* colors

Lattice: Bornyakov et al, 1711.01869.

String tension in time: decreases to ~ 0 by μ ~ 750 MeV

Lattice for T = 0, $\mu \neq 0$, *two* colors

Lattice: Bornyakov et al, 1711.01869.

Phases for $N_c = 2$, T ~ 0, $\mu \neq 0$

Braguta, Ilgenfritz, Kotov, Molochkov, & Nikolaev, 1605.04090 (earlier: Hands, Skellerud + ...)

Lattice: $N_c = 2$, $N_f = 2$. $m_{\pi} \sim 400$ MeV, fixed T ~ 50 MeV, vary μ .

Hadronic phase: $0 \le \mu < m_{\pi}/2 \sim 200$ MeV. Confined, independent of μ

Dilute baryons: $200 < \mu < 350$. Bose-Einstein condensate (BEC) of diquarks.

Dense Baryons: $350 < \mu < 600$. Pressure *not* perturbative, BEC

Quarkyonic: $600 < \mu < 1100$: pressure ~ perturbative, but excitations *confined* (Wilson loop ~ area)

Perturbative: $1100 < \mu$, but μ a too large.

Quarkyonic matter

McLerran & RDP 0706.2191

At large N_c , $g^2 N_c \sim 1$, $g^2 N_f \sim 1/N_c$, so need to go to *large* $\mu \sim N_c^{1/2}$.

 $m_{Debye}^2 = g^2((N_c + N_f/2)T^2/3 + N_f\mu^2/(2\pi^2))$

Doubt large N_c applicable at $N_c = 2$.

When does perturbation theory work?

 $T = \mu = 0$: scattering processes computable for momentum p > 1 GeV

 $T \neq 0$: p > 2 π T, lowest Matsubara energy

 $\mu \neq 0$, T = 0: μ is like a scattering scale, so *perhaps* $\mu_{pert} \sim 1$ GeV. At least for the pressure. Excitations determined by region near Fermi surface

Possible phases of cold, dense quarks

Confined: $0 \le \mu < m_{\text{baryon}}/3$. μ doesn't matter

Dilute baryons: $m_{\text{baryon}} 3 < \mu < \mu_{\text{dilute}}$: Effective models of baryons, pions

Dense baryons: $\mu_{dilute} < \mu < \mu_{dense}$. Pion/kaon condensates.

Quarkyonic: $\mu_{dilute} < \mu < \mu_{perturbative}$. 1-dim. chiral spirals.

Perturbative: $\mu_{\text{perturbative}} < \mu$. Color superconductivity

 $\mu_{\text{perturbative}} \sim 1 \text{ GeV}?$

Dense baryons and quarkyonic *continously* related.

U(1) order parameter in both.

Relevance for neutron stars

Fraga, Kurkela, & Vuorinen 1402.6618.

Maximum μ may reach quarkyonic (for pressure), but true perturbative?

Ghisoiu, Gorda, Kurkela, Romatschke, Säppi, & Vuorinen, 1609.04339: pressure(μ) ~ g⁶. Will be able to compute $\Lambda_{pert} = \# \mu$. $\# \sim 1$?

Quarkyonic matter: 1-dim. reduction

Kojo, Hidaka, McLerran & RDP 0912.3800: as toy model, assume confining potential

$$\Delta_{00} = \frac{\sigma_0}{(\vec{p}^{\,2})^2} \,, \; \Delta_{ij} \sim \frac{1}{p^2}$$

Near the Fermi surface, reduces to effectively 1-dim. problem in patches. For *either* massless or massive quarks, excitations have zero energy about Fermi surface; just Fermi velocity $v_F < 1$ if $m \neq 0$.

Spin in 4-dim. -> "flavor" in 1-dim., so *extended* $2N_f$ flavor symmetry, SU(N_f)_LxSU(N_f)_R -> SU(2 N_f)_LxSU(2 N_f)_R. Similar to Glozman,1511.05857.

Extended 2 N_f flavor sym. broken by transverse fluctuations, only approximate.

Number of patches N_{patch} ~ μ/σ_0 , so spherical Fermi surface recovered as σ_0 -> 0

Transitions with # patches

Minimal number of patches = 6.

Probably occurs in dense baryonic phase.

In quarkyonic, presumably weak 1st order transitions as # patches changes.

Like Keplers....

Chiral spirals in 1+1 dimensions

In 1+1 dim., can eliminate μ by chiral rotation:

 $q' = e^{i\mu z\Gamma_5}q$, $\overline{q}(\not D + i\mu\Gamma_0)q = \overline{q}'\not D q'$, $\Gamma_5\Gamma_z = \Gamma_0$

Thus a constant chiral condensate automatically becomes a chiral spiral:

$$\overline{q}'q' = \cos(2\mu z)\overline{q}q + i\sin(2\mu z)\overline{q}\gamma_5 q$$

Argument is only suggestive.

N.B.: anomaly ok, gives quark number: $\langle \overline{q}\Gamma_0 q \rangle = \mu/\pi$

Pairing is between quark & quark-hole, both at edge of Fermi sea. Thus chiral condensate varies in z as ~ 2 μ .

Bosonization in 1+1 dimensions

Do not need detailed form of chiral spiral to determine excitations. Use bosonization. For one fermion,

$\overline{\psi} \not \partial \psi \leftrightarrow (\partial_i \phi)^2$

 φ corresponds to U(1) of baryon number. In general, non-Abelian bosonization. For flavor modes,

$$\mathcal{S}_{eff}^{flavor} = \int dt \int dz \ 3 \frac{1}{16\pi} \operatorname{tr}(\partial_{\mu}U^{\dagger})(\partial_{\mu}U) + \dots$$

where U is a SU(2 N_f) matrix.

Do not show Wess-Zumino-Witten terms for level 3 = # colors.

Also effects of transverse fluctuations, reduce $SU(2 N_f) \rightarrow SU(N_f)$; quark mass

Lastly, SU(3) + level 2 N_f sigma model. Modes are gapped by confinement.

Pion/kaon condensates & U(1) phonon

Overhauser '60, Migdal '71....Kaplan & Nelson '86... Pion/kaon condensate:

$\langle \overline{q}_L q_R \rangle \sim \langle \Phi \rangle \sim \Phi_0 \exp(i(qz + \phi)t_3)$

Condensate along σ and $\pi^0 => t_3$. Kaon condensate σ and K, etc.

Excitations are the SU(N_f) Goldstone bosons *and* a "phonon", φ .

Phases with pion/kaon condensates and quarkyonic Chiral Spirals both spontaneously break U(1), have associated massless field.

Continuously connected: SU(N_f) of π/K condensate => ~ SU(2 N_f) of CS's. Fluctuations same in both.

Perhaps WZW terms for π/K condensates?

Anisotropic fluctuations in Chiral Spirals

Spontaneous breaking of global symmetry => Goldstone Bosons have derivative interactions, $\sim \partial^2$

 π/K condensates and CS's break both global *and* rotational symmetries

Interactions along condensate direction usual quadratic, $\sim \partial_{r}^{2}$

But those quadratic in transverse momenta, ~ ∂_{\perp}^2 , *cancel, leaving quartic*, ~ ∂_{\perp}^4 .

$$\mathcal{L}_{eff} = f_{\pi}^2 |(\partial_z - ik_0)U|^2 + \kappa |\partial_{\perp}^2 U|^2 + \dots$$

Valid for *both* the U(1) phonon ϕ and Goldstone bosons U

Hidaka, Kamikado, Kanazawa & Noumi 1505.00848; Lee, Nakano, Tsue, Tatsumi & Friman, 1504.03185; Nitta, Sasaki & Yokokura 1706.02938

No long range order in Chiral Spirals

Consider tadpole diagram with anisotropic propagator

$$\int d^2 k_{\perp} \, dk_z \, \frac{1}{(k_z - k_0)^2 + (k_{\perp}^2)^2} \sim \int d^2 k_{\perp} \, \frac{1}{k_{\perp}^2} \sim \log \Lambda_{\rm IR}$$

Old story for π/K condensates: Kleinert '81; Baym, Friman, & Grinstein, '82.

- Similar to smectic-C liquid crystals:
- ordering in one direction,
- liquid in transverse.
- Hence anisotropic propagator

Increasing opacity

Chiral Spirals in 1+1 dimensions

Chiral Spiral (CS) ~ Migdal's pion condensate:

 $(\sigma, \pi^0) = f_{\pi}(\cos(k_0 z), \sin(k_0 z))$

Ubiquitous in 1+1 dimensions:Basar, Dunne & Thies, 0903.1868; Dunne & Thies 1309.2443+ ... *Wealth* of exact solutions, phase diagrams at *infinite* N_f .

Chiral Spirals in 3+1 dimensions

In 3+1, common in NJL models: Nickel, 0902.1778 +Buballa & Carignano 1406.1367 + ...

In reduction to 1-dim, $\Gamma_5^{1-\text{dim}} = \gamma_0 \gamma_z$, so chiral spiral between $\overline{q}q \& \overline{q}\gamma_0 \gamma_z \gamma_5 q$

NJL models and Lifshitz points

Consider Nambu-Jona-Lasino models.

Nickel, 0902,1778 & 0906.5295 + + Buballa & Carignano 1406.1367

$$\mathcal{L}_{\rm NJL} = \overline{\psi}(\partial \!\!\!/ + g\sigma)\psi + \sigma^2$$

Integrating over ψ ,

$$\operatorname{tr}\log(\partial + g\,\sigma) \sim \ldots + \kappa_1((\partial \sigma)^2 + \sigma^4) + \ldots$$

Due to scaling, $\partial \rightarrow \lambda \partial$, $\sigma \rightarrow \lambda \sigma$. Consequently, in NJL @ 1-loop, *tricritical* = *Lifshitz point*.

Special to including only σ at one loop.

Not generic: violated by the inclusion of more fields, to two loop order, etc.

Improved gradient expansion near critical point: Carignano, Anzuni, Benhar, & Mannarelli, 1711.08607. Both of these phase diagrams are *dramatically* affected by fluctuations:

no true Lifshitz point in 1+1 or 3+1 dimensions

Standard phase diagram

Usual critical dimensions

 φ^4 : $d_{upper} = 4$: expand in $d = 4 - \varepsilon$ dimensions

$$\int d^4k \; \frac{1}{(k^2)^2} \sim \log \Lambda_{\rm UV}$$

 φ^4 : $d_{lower} = 2$: expand in 2 + ε dimensions always disordered when d < 2

$$\int d^2k \; \frac{1}{k^2} \sim \log \Lambda_{\rm IR}$$

 ϕ^6 : $d_{critical} = 3$: at tricritical point, log corrections

$$\int d^3k_1 \int d^3k_2 \, \frac{1}{(k_1)^2 (k_2)^2 (k_1 + k_2)^2} \sim \log \Lambda_{\rm UV}$$

Lifshitz points

To get a Chiral Spiral (CS):

$$\mathcal{L}_{CS} = (\partial_0 \phi)^2 + Z(\partial_i \phi)^2 + \frac{1}{M^2} (\partial_i^2 \phi)^2 + m^2 \phi^2 + \lambda \phi^4$$

Need higher (spatial) derivatives for stability. Then CS occurs when Z < 0. Can*not* have higher derivatives in time or theory is acausal. In gravity, models with higher derivatives are renormalizable:

$$\mathcal{L}_{\text{ren.gravity}} = \frac{1}{16\pi G} R + \alpha_1 R^2 + \alpha_2 R_{\mu\nu}^2$$

but acausal. Hořava-Lifshitz gravity: add higher derivatives only in space Hořava 0901.3775 + ...

$$\mathcal{L}_{\text{Horava-Lifshitz}} = \frac{1}{16\pi G}R + \beta_1 R_{ij}^2 + \dots$$

Only two time derivatives, so causal. Flows into Einstein gravity in the infrared.

Lifshitz phase diagram in mean field theory

Phase diagram in Z & m²: *three* phases, symmetric, broken, *and* Chiral Spiral Hornreich, Luban, Shtrikman, PRL '75, Hornreich J. Magn. Matter '80...Diehl, cond_mat/0205284 + ...

Symmetric to CS: 1D (Brazovski) fluctuations

Consider $m^2 > 0$, Z < 0: minimum in propagator at *non*zero momentum Brazovski '75; Hohenberg & Swift '95 + ... ;

Lee, Nakano, Tsue, Tatsumi & Friman, 1504.03185; Yoshiike, Lee & Tatsumi 1702.01511

$$\Delta^{-1} = m^2 + Z k^2 + k^4 / M^2$$

= $m_{\text{eff}}^2 - 2 Z k_z^2 + O(k_z^3, k_z k_\perp^2)$

k=(k_{\perp} , k_{z} - k_{0}): *no* terms in k_{\perp}^{2} , *only* (k_{\perp}^{2})². Due to spon. breaking of rotational sym. 1-loop tadpole diagram:

$$\int d^3k \; \frac{1}{k_z^2 + m_{\text{eff}}^2 + \dots} \sim M^2 \int \frac{dk_z}{k_z^2 + m_{\text{eff}}^2} \sim \frac{M^2}{m_{\text{eff}}}$$

Effective reduction to 1-dim for any spatial dimension d, any global symmetry

1st order transition in 1-dim.

Strong infrared fluctuations in 1-dim., both in the mass:

$$\Delta m^2 \sim \lambda \int d^3k \, \frac{1}{k_z^2 + m_{\text{eff}}^2 + \dots} \sim \lambda \, \frac{M}{m_{\text{eff}}}$$

and for the coupling constant:

$$\Delta \lambda \sim -\lambda^2 \int \frac{d^3k}{(k_z^2 + m_{\text{eff}}^2 + \dots)^2} \sim -\lambda^2 M^3 \int_{m_{\text{eff}}} \frac{dk_z}{k_z^4} \sim -\lambda \frac{M^3}{m_{\text{eff}}^3}$$

Cannot tune m_{eff}^{2} to 0: λ_{eff} goes negative, 1st order trans. induced by fluctuations

Not like other 1st order fluc-ind'd trans's: just that in 1-d, $m_{eff}^2 \neq 0$ always

Lifshitz phase diagram, with eff. 1-D fluc.'s

What about fluctuations at the Lifshitz point?

Critical dimensions at the Lifshitz point

At the Lifshitz point, Z=m=0, massless propagator ~ $1/k^4$

$$\mathcal{L}_{\text{Lifshitz}} = (\partial^2 \phi)^2 + \lambda \phi^4$$

 $d_{upper} = 8$: expand in $d = 8 - \varepsilon$ dimensions $\int d^8 k \ \frac{1}{(k^4)^2} \sim \log \Lambda_{\rm UV}$

 $d_{lower} = 4$: expand in $d = 4 + \varepsilon$ dimensions

$$\int d^4k \; \frac{1}{k^4} \sim \log \Lambda_{\rm IR}$$

d = 3 < d_{lower}: there is *NO* (isotropic) Lifshitz point in *three* dimensions ...+ Bonanno & Zappala, 1412.7046; Zappala, 1703.00791 Infrared fluctuations *always* generate a mass gap *dynamically*.

Phase diagram without a Lifshitz point?

Have three phases, three lines of phase transition far from the would be Lifshitz point. *How can they connect?*

A: looks like Lifshitz point, but isn't

All three lines connect, endpoint is *same* universality class as 2nd order line

Unbroken line of 1st order transitions, with "pseudo"-Lifshitz point

B: 1st order line between broken/CS phases ends

U(1) sym. bkg'g between CS and other phases.

Could be line of second order transitions between broken & CS phases

C: Brazovski 1st order CS/sym. line ends

Brazikovski 1st order line ends in critical endpoint, turns into 2nd order line

Lifshitz points in inhomogenous polymers: mean field Fredrickson & Bates, Jour. Polymer Sci. 35, 2775 (1997); Fredrickson, "The equilibrium theory of inhomogenous polymers", pg. 390.

Polymers A & B, for blend with A, B, & A+B

Have disordered, separated, and "lamellar" phases

Inhomogenous polymers: no Lifshitz point

From exp. & Monte Carlo, Lifshitz point wiped out by fluctuations. "bicontinuous microemulsion" appears "structured, fluctuating disordered phase" Appears to support (A)...

Phase diagram for QCD in T & μ : usual picture

Two phases, one Critical End Point (CEP)

between crossover and line of 1st order transitions

Ising fixed point, dominated by massless fluctuations at CEP

Possible phase diagram: chiral limit

In chiral limit, three phases. 2nd order line, endpoint in same universality class "Pseudo" Lifshitz point with *large* fluctuations.

In CS, large fluc.'s at *non*zero momenta, $\sim k_0$.

Possible phase diagram: near chiral limit

2nd order line washed out, leaving *only* a 1st order line marking CS phase Can show: T_{max} of first order line has equal densities (entropies differ)

Punchline: no critical endpoint. Region where CS's have large fluctuations

Beam Energy Scan and cumulants

- To look for Critical End Point, typically compute cumulants
- Expectation from theory, to right: corrections to c_3 are *positive*
- But STAR finds that the corrections to c_3 , below, are *negative*

30 40

20

1.05

1.00

0.95

0.90

0.85

5

67810

Fluctuations at 7 GeV

Beam Energy Scan, down to 7 GeV.

Fluctuations MUCH larger when up to 2 GeV than to 0.8 GeV

Trivial multiplicity scaling? ... or Chiral Spiral?

But fluctuations in nucleons, not pions.

X. Luo & N. Xu, 1701.02105, fig. 37; Jowazee, 1708.03364

Suggestion for experiment

- For any sort of periodic structure (1D, 2D, 3D...),
- fluctuations concentrated about some characteristic momentum k₀
- So "slice and dice": bin in intervals, 0 to .5 GeV, .5 to 1., etc.
- If peak in fluctuations in a bin not including zero, may be evidence for $k_0 \neq 0$.
- If periodic structure, fluctuations must go up as \sqrt{s} goes down, since μ increases

Gertrude Stein about Oakland, California, ~ 1890:

"There's no there, there."

Beam Energy Scan at RHIC, FAIR, NICA, JPARC:

There *is* a there, there

But what is it?

