Neutron Star Merger Simulations

David Radice^{1,2}

¹ Research Associate, Princeton University ² Taplin Member, Institute for Advanced Study

Compact Stars in the QCD Phase Diagram VII – NYC, June 11, 2018

From LIGO Scientific Collaboration and Virgo Collaboration, Fermi GBM, INTEGRAL, IceCube Collaboration, AstroSat Cadmium Zinc Telluride Imager Team, IPN Collaboration, The Insight-Hxmt Collaboration, ANTARES Collaboration, The Swift Collaboration, AGILE Team, The 1M2H Team, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration. The DLT40 Collaboration, GRAWITA: GRAvitational Wave Inaf TeAm, The Fermi Large Area Telescope Collaboration, ATCA: Australia Telescope Compact Array, ASKAP: Australian SKA Pathfinder, Las Cumbres Observatory Group, OzGrav, DWF (Deeper, Wider, Faster Program), AST3, and CAASTRO Collaborations, The VINROUGE Collaboration, MASTER Collaboration, J-GEM, GROWTH, JAGWAR, Caltech- NRAO, TTU-NRAO, and NuSTAR Collaborations, Pan-STARRS, The MAXI Team, TZAC Consortium, KU Collaboration, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS: Transient Robotic Observatory of the South Collaboration, The BOOTES Collaboration, MWA: Murchison Widefield Array, The CALET Collaboration, IKI-GW Follow-up Collaboration, H.E.S.S. Collaboration, LOFAR Collaboration, LWA: Long Wavelength Array, HAWC Collaboration, The Pierre Auger Collaboration, ALMA Collaboration, Euro VLBI Team, Pi of the Sky Collaboration, The Chandra Team at McGill University, DFN: Desert Fireball Network, ATLAS, High Time Resolution Universe Survey, RIMAS and RATIR, and SKA South Africa/MeerKAT ApJL 848:L12 (2017)

What happened?

LS220, 1.4 + 1.4 M_☉

Simulation: **DR**, Visualization: Cosima Breu (Frankfurt)

What happened?

LS220, 1.4 + 1.4 M_☉

Simulation: **DR**, Visualization: Cosima Breu (Frankfurt)

Merger outcome

From Bartos, Brady, & Márka, CQG 30:123001 (2013)

What happened?

- Fate of the remnant unknown, but likely a BH
- A short gamma-ray burst was launched. How?
- Synchrotron emission at late times: radio to X-ray Cocoon? Structured jet?
- Radioactive of neutron rich ejecta powers (~0.05 M_o of ejecta) UV/optical/infrared

What have we learned about neutron stars?

Tidal effects in NS mergers

 $Q_{ij} = -\Lambda_2 \mathcal{E}_{ij}$

- Part of the orbital energy goes into tidal deformation
- Accelerated inspiral
- Imprinted on the gravitational waves
- Constrains dimensionless tidal parameter

$$\tilde{\Lambda}_2 = \frac{\Lambda_2}{M^5} \sim \frac{R^5}{M^5}$$

Constraints from GW170817

See also De+ arXiv:1804.08583

From LIGO/Virgo collaboration, PRL 119, 161101 (2017)

Constraints from GW170817

See also De+ arXiv:1804.08583

LIGO/Virgo collaboration arXiv:1805.11579

EOS constraints from GW+EM

From Margalit & Metzger 2017

Assumption: no prompt BH formation —> EOS must be stiff enough Assumption: no stable remnant —> EOS must soft enough

See also Bauswein+, Rezzolla+, Shibata+, Ruiz+ (2017)

WhiskyTHC

http://www.astro.princeton.edu/~dradice/whiskythc.html

- Full-GR, dynamical spacetime*
- Nuclear EOS
- Effective neutrino treatment
- High-order hydrodynamics
- Open source!

* using the Einstein Toolkit metric solvers

THC: Templated Hydrodynamics Code

Strong and weak r-process

From Lippuner & Roberts, ApJ 815:82 (2015)

Neutron rich outflows

See also Wanajo+ 2014, Sekiguchi+ 2015, 2016, Foucart+ 2016

Neutron rich outflows: model

- Geometry and composition of the outflows from simulations
- Multiple ejecta components
- Ejecta masses from fitting AT2017gfo

Kilonova modeling

See also: Chornock et al. 2017; Cowperthwaite et al. 2017; Drout et al. 2017; Nicholl et al. 2017; Rosswog et al. 2017; Tanaka et al. 2017; Tanvir et al. 2017; Villar et al. 2017

Perego, **DR**, Bernuzzi, arXiv:1711.03982

Kilonova modeling

See also: Chornock et al. 2017; Cowperthwaite et al. 2017; Drout et al. 2017; Nicholl et al. 2017; Rosswog et al. 2017; Tanaka et al. 2017; Tanvir et al. 2017; Villar et al. 2017

Perego, **DR**, Bernuzzi, arXiv:1711.03982

Prompt collapse?

 $(1.44 + 1.39) M_{\odot} - B1913 + 13$

DR, Perego, Zappa, ApJL 852:L29 (2018)

Prompt collapse?

 $(1.44 + 1.39) M_{\odot} - B1913 + 13$

DR, Perego, Zappa, ApJL 852:L29 (2018)

GW170817: delayed BH formation

See also Bauswein+ 2017 ApJL 850:L34

DR, Perego, Zappa, ApJL 852:L29 (2018)

Dynamical ejecta mass

DR et al. (2018), in prep

Disk masses

DR et al. (2018), in prep

Preliminary constraints

Future prospects: post-merger signal

Postmerger peak frequency

- Post-merger signal has a characteristic peak frequency
- f_{peak} correlates with the NS radius
- Small statistical uncertainty, systematics not understood yet

See also Takami+ 2014; Rezzolla & Takami 2016; Dietrich+ 2016; Bose+ 2017

Extreme-density physics

- Same EOS at low density; softening at high density
- Typical binaries have the same $\tilde{\Lambda}!$
- Different compactness, collapse time of remnant
- Can we tell them apart? Yes with the postmerger!

Effect on the evolution

t = 0.00 ms

Effect on the evolution

t = 0.00 ms

Binding energy

High-density EOS encoded in the binding energy

Gravitational waveform

DR, Bernuzzi, Del Pozzo+, ApJL 842:L10 (2017)

Detectability

DR, Bernuzzi, Del Pozzo+, ApJL 842:L10 (2017)

Detectability

GW luminosity in the postmerger

http://www.computational-relativity.org

Zappa, Bernuzzi, **DR**+, RPL 120:111101 (2018)

Future prospects: long-lived remnants

Long-lived remnants (I)

DR, Perego, Bernuzzi, Zhang, arXiv:1803.10865

Long-lived remnants (II)

- Low-mass NS binaries exist* and likely form stable remnants
- Long-lived remnants are found to be unstable over the viscous timescale
- Smoking gun: a very bright kilonova with a blue component

* PSR J1411+2551; PSR J1946+2052

DR, Perego, Bernuzzi, Zhang, arXiv:1803.10865

Conclusions

- GW170817 probably made a BH, but not immediately
- Using numerical relativity to bridge the gap between EM and GW observations: starting to constrain the NS EOS
- The postmerger phase is key to reveal the EOS at the highest densities
- The next GW event might look very differently!

http://www.computational-relativity.org