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We explore the implications of the QCD phase transition during the postbounce evolution of core-

collapse supernovae. Using the MIT bag model for the description of quark matter, we model phase

transitions that occur during the early postbounce evolution. This stage of the evolution can be simulated

with general relativistic three-flavor Boltzmann neutrino transport. The phase transition produces a second

shock wave that triggers a delayed supernova explosion. If such a phase transition happens in a future

galactic supernova, its existence and properties should become observable as a second peak in the neutrino

signal that is accompanied by significant changes in the energy of the emitted neutrinos. This second

neutrino burst is dominated by the emission of antineutrinos because the electron degeneracy is reduced

when the second shock passes through the previously neutronized matter.

DOI: 10.1103/PhysRevLett.102.081101 PACS numbers: 26.50.+x, 21.65.Qr, 26.60.!c, 95.85.Ry

In search of the phase transition from hadronic to de-
confined matter, heavy-ion experiments at RHIC and at
LHC explore the QCD phase diagram for large tempera-
tures and small baryochemical potentials—conditions,
which were also present in the early universe. For high
chemical potentials and low temperatures a first order
chiral phase transition is expected and will be tested at
the FAIR facility at GSI Darmstadt. Because of their large
central densities, compact stars can also serve as laborato-
ries for nuclear matter beyond saturation density and may
contain quark matter [1]. The formation of quark matter in
compact stars is mainly discussed in two scenarios, in
protoneutron stars (PNSs) after the supernova explosion
[2] and in old accreting neutron stars [3,4].

In this Letter we follow a third and less discussed case.
The phase transition from hadronic to quark matter can
already occur in the early postbounce phase of a core-
collapse supernova [5–9]. This requires a phase transition
onset close to saturation density, which can be realized for
high temperatures and low proton fractions. For such a
scenario Ref. [7] found the formation of a second shock as
a direct consequence of the phase transition. However, the
lack of neutrino transport in their model allowed them to
investigate the dynamics only for a few ms after the
bounce. Recently, a quark matter phase transition has
been considered with Boltzmann neutrino transport for a
100M" progenitor [10]. The appearance of quark matter
shortened the time until black hole formation but did not
lead to the launch of a second shock.

In our core-collapse simulations of low- and
intermediate-mass progenitor stars, we confirm the forma-
tion of a second shock caused by the phase transition to
quark matter. We even find that the second shock triggers a
delayed supernova explosion during the postbounce accre-

tion phase. This represents an interesting addition to cur-
rently discussed supernova explosion mechanisms, such as
the neutrino-driven [11], the magneto-rotational [12,13] or
the acoustic mechanisms [14]. A clear imprint of the phase
transition to quark matter at the launch of the explosion
could be expected in the neutrino signal, the emission of
gravitational waves [3,4], and the nucleosynthesis yields.
Lattice QCD is not yet able to make predictions for large

chemical potentials relevant for neutron star calculations.
Consequently, the quark matter equation of state (EOS) is
currently computed using phenomenological descriptions
such as the MIT bag or the NJL models. As we aim to study
the basic effects from quark matter phase transitions on
core-collapse supernovae, we chose the very simple but
widely applied MIT bag model. In modeling the phase
transition to quark matter there is a main physical uncer-
tainty: the critical density ncrit for the onset of the mixed
phase. In our model, ncrit is determined by the bag constant
B and the strange quark mass. At present, the bag constant
is not a fixed parameter, with typical values between
B1=4 ¼ 145–200 MeV [15]. We choose the bag constant
such that we obtain an early onset for the phase transition
and a maximum mass of more than 1:44M", without
enabling absolutely stable strange quark matter. In com-
pliance with these constraints we select B1=4 ¼ 162 MeV
(eos1) and 165 MeV (eos2), and a strange quark mass of
100 MeVas indicated by the Particle Data Group [16]. For
the hadronic EOS we use the table of Shen et al. [17]. The
phase transition to quark matter is modeled by a Gibbs
construction as discussed in Refs. [8,10]. For comparison,
we have also computed the EOS by using the Maxwell
construction and find that the results of our core-collapse
simulations are qualitatively similar. For the sake of sim-
plicity, we have neglected finite size effects and Coulomb
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vacuum medium dependence

D = D0 D(ρ) = D0 Φ(ρ)

Φ(ρ) = exp
�
−α(ρ− ρ0)2

�

µ∗ = µ− a ρ−O
�
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�
repulsive vector interaction:

A&A 577, 40 (2015)
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∼ 2 M⊙

“The progenitor was so bright that 
it probably belonged to a class of 
stars called Luminous Blue 
Variables (LBVs)”

Novel road to explosions of very 
massive stars � 40− 50 M⊙

∼ 2 M⊙remnants: massive neutron stars

r process nucleosynthesis
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